File: exp.sollya

package info (click to toggle)
llvm-toolchain-15 1%3A15.0.6-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,554,644 kB
  • sloc: cpp: 5,922,452; ansic: 1,012,136; asm: 674,362; python: 191,568; objc: 73,855; f90: 42,327; lisp: 31,913; pascal: 11,973; javascript: 10,144; sh: 9,421; perl: 7,447; ml: 5,527; awk: 3,523; makefile: 2,520; xml: 885; cs: 573; fortran: 567
file content (36 lines) | stat: -rw-r--r-- 1,250 bytes parent folder | download | duplicates (21)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
// polynomial for approximating e^x
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

deg = 5; // poly degree
N = 128; // table entries
b = log(2)/(2*N);  // interval
b = b + b*0x1p-16; // increase interval for non-nearest rounding (TOINT_NARROW)
a = -b;

// find polynomial with minimal abs error

// return p that minimizes |exp(x) - poly(x) - x^d*p(x)|
approx = proc(poly,d) {
  return remez(exp(x)-poly(x), deg-d, [a;b], x^d, 1e-10);
};

// first 2 coeffs are fixed, iteratively find optimal double prec coeffs
poly = 1 + x;
for i from 2 to deg do {
  p = roundcoefficients(approx(poly,i), [|D ...|]);
  poly = poly + x^i*coeff(p,0);
};

display = hexadecimal;
print("rel error:", accurateinfnorm(1-poly(x)/exp(x), [a;b], 30));
print("abs error:", accurateinfnorm(exp(x)-poly(x), [a;b], 30));
print("in [",a,b,"]");
// double interval error for non-nearest rounding
print("rel2 error:", accurateinfnorm(1-poly(x)/exp(x), [2*a;2*b], 30));
print("abs2 error:", accurateinfnorm(exp(x)-poly(x), [2*a;2*b], 30));
print("in [",2*a,2*b,"]");
print("coeffs:");
for i from 0 to deg do coeff(poly,i);