1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
//===-- Benchmark memory specific tools -------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file complements the `benchmark` header with memory specific tools and
// benchmarking facilities.
#ifndef LLVM_LIBC_UTILS_BENCHMARK_MEMORY_BENCHMARK_H
#define LLVM_LIBC_UTILS_BENCHMARK_MEMORY_BENCHMARK_H
#include "LibcBenchmark.h"
#include "LibcFunctionPrototypes.h"
#include "MemorySizeDistributions.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Alignment.h"
#include <cstdint>
#include <random>
namespace llvm {
namespace libc_benchmarks {
//--------------
// Configuration
//--------------
struct StudyConfiguration {
// One of 'memcpy', 'memset', 'memcmp'.
// The underlying implementation is always the llvm libc one.
// e.g. 'memcpy' will test '__llvm_libc::memcpy'
std::string Function;
// The number of trials to run for this benchmark.
// If in SweepMode, each individual sizes are measured 'NumTrials' time.
// i.e 'NumTrials' measurements for 0, 'NumTrials' measurements for 1 ...
uint32_t NumTrials = 1;
// Toggles between Sweep Mode and Distribution Mode (default).
// See 'SweepModeMaxSize' and 'SizeDistributionName' below.
bool IsSweepMode = false;
// Maximum size to use when measuring a ramp of size values (SweepMode).
// The benchmark measures all sizes from 0 to SweepModeMaxSize.
// Note: in sweep mode the same size is sampled several times in a row this
// will allow the processor to learn it and optimize the branching pattern.
// The resulting measurement is likely to be idealized.
uint32_t SweepModeMaxSize = 0; // inclusive
// The name of the distribution to be used to randomize the size parameter.
// This is used when SweepMode is false (default).
std::string SizeDistributionName;
// This parameter allows to control how the buffers are accessed during
// benchmark:
// None : Use a fixed address that is at least cache line aligned,
// 1 : Use random address,
// >1 : Use random address aligned to value.
MaybeAlign AccessAlignment = None;
// When Function == 'memcmp', this is the buffers mismatch position.
// 0 : Buffers always compare equal,
// >0 : Buffers compare different at byte N-1.
uint32_t MemcmpMismatchAt = 0;
};
struct Runtime {
// Details about the Host (cpu name, cpu frequency, cache hierarchy).
HostState Host;
// The framework will populate this value so all data accessed during the
// benchmark will stay in L1 data cache. This includes bookkeeping data.
uint32_t BufferSize = 0;
// This is the number of distinct parameters used in a single batch.
// The framework always tests a batch of randomized parameter to prevent the
// cpu from learning branching patterns.
uint32_t BatchParameterCount = 0;
// The benchmark options that were used to perform the measurement.
// This is decided by the framework.
BenchmarkOptions BenchmarkOptions;
};
//--------
// Results
//--------
// The root object containing all the data (configuration and measurements).
struct Study {
std::string StudyName;
Runtime Runtime;
StudyConfiguration Configuration;
std::vector<Duration> Measurements;
};
//------
// Utils
//------
// Provides an aligned, dynamically allocated buffer.
class AlignedBuffer {
char *const Buffer = nullptr;
size_t Size = 0;
public:
// Note: msan / asan can't handle Alignment > 512.
static constexpr size_t Alignment = 512;
explicit AlignedBuffer(size_t Size)
: Buffer(static_cast<char *>(aligned_alloc(Alignment, Size))),
Size(Size) {}
~AlignedBuffer() { free(Buffer); }
inline char *operator+(size_t Index) { return Buffer + Index; }
inline const char *operator+(size_t Index) const { return Buffer + Index; }
inline char &operator[](size_t Index) { return Buffer[Index]; }
inline const char &operator[](size_t Index) const { return Buffer[Index]; }
inline char *begin() { return Buffer; }
inline char *end() { return Buffer + Size; }
};
// Helper to generate random buffer offsets that satisfy the configuration
// constraints.
class OffsetDistribution {
std::uniform_int_distribution<uint32_t> Distribution;
uint32_t Factor;
public:
explicit OffsetDistribution(size_t BufferSize, size_t MaxSizeValue,
MaybeAlign AccessAlignment);
template <class Generator> uint32_t operator()(Generator &G) {
return Distribution(G) * Factor;
}
};
// Helper to generate random buffer offsets that satisfy the configuration
// constraints. It is specifically designed to benchmark `memcmp` functions
// where we may want the Nth byte to differ.
class MismatchOffsetDistribution {
std::uniform_int_distribution<size_t> MismatchIndexSelector;
llvm::SmallVector<uint32_t, 16> MismatchIndices;
const uint32_t MismatchAt;
public:
explicit MismatchOffsetDistribution(size_t BufferSize, size_t MaxSizeValue,
size_t MismatchAt);
explicit operator bool() const { return !MismatchIndices.empty(); }
const llvm::SmallVectorImpl<uint32_t> &getMismatchIndices() const {
return MismatchIndices;
}
template <class Generator> uint32_t operator()(Generator &G, uint32_t Size) {
const uint32_t MismatchIndex = MismatchIndices[MismatchIndexSelector(G)];
// We need to position the offset so that a mismatch occurs at MismatchAt.
if (Size >= MismatchAt)
return MismatchIndex - MismatchAt;
// Size is too small to trigger the mismatch.
return MismatchIndex - Size - 1;
}
};
/// This structure holds a vector of ParameterType.
/// It makes sure that BufferCount x BufferSize Bytes and the vector of
/// ParameterType can all fit in the L1 cache.
struct ParameterBatch {
struct ParameterType {
unsigned OffsetBytes : 16; // max : 16 KiB - 1
unsigned SizeBytes : 16; // max : 16 KiB - 1
};
ParameterBatch(size_t BufferCount);
/// Verifies that memory accessed through this parameter is valid.
void checkValid(const ParameterType &) const;
/// Computes the number of bytes processed during within this batch.
size_t getBatchBytes() const;
const size_t BufferSize;
const size_t BatchSize;
std::vector<ParameterType> Parameters;
};
/// Provides source and destination buffers for the Copy operation as well as
/// the associated size distributions.
struct CopySetup : public ParameterBatch {
CopySetup();
inline static const ArrayRef<MemorySizeDistribution> getDistributions() {
return getMemcpySizeDistributions();
}
inline void *Call(ParameterType Parameter, MemcpyFunction Memcpy) {
return Memcpy(DstBuffer + Parameter.OffsetBytes,
SrcBuffer + Parameter.OffsetBytes, Parameter.SizeBytes);
}
private:
AlignedBuffer SrcBuffer;
AlignedBuffer DstBuffer;
};
/// Provides source and destination buffers for the Move operation as well as
/// the associated size distributions.
struct MoveSetup : public ParameterBatch {
MoveSetup();
inline static const ArrayRef<MemorySizeDistribution> getDistributions() {
return getMemmoveSizeDistributions();
}
inline void *Call(ParameterType Parameter, MemmoveFunction Memmove) {
return Memmove(Buffer + ParameterBatch::BufferSize / 3,
Buffer + Parameter.OffsetBytes, Parameter.SizeBytes);
}
private:
AlignedBuffer Buffer;
};
/// Provides destination buffer for the Set operation as well as the associated
/// size distributions.
struct SetSetup : public ParameterBatch {
SetSetup();
inline static const ArrayRef<MemorySizeDistribution> getDistributions() {
return getMemsetSizeDistributions();
}
inline void *Call(ParameterType Parameter, MemsetFunction Memset) {
return Memset(DstBuffer + Parameter.OffsetBytes,
Parameter.OffsetBytes % 0xFF, Parameter.SizeBytes);
}
inline void *Call(ParameterType Parameter, BzeroFunction Bzero) {
Bzero(DstBuffer + Parameter.OffsetBytes, Parameter.SizeBytes);
return DstBuffer.begin();
}
private:
AlignedBuffer DstBuffer;
};
/// Provides left and right buffers for the Comparison operation as well as the
/// associated size distributions.
struct ComparisonSetup : public ParameterBatch {
ComparisonSetup();
inline static const ArrayRef<MemorySizeDistribution> getDistributions() {
return getMemcmpSizeDistributions();
}
inline int Call(ParameterType Parameter, MemcmpOrBcmpFunction MemcmpOrBcmp) {
return MemcmpOrBcmp(LhsBuffer + Parameter.OffsetBytes,
RhsBuffer + Parameter.OffsetBytes, Parameter.SizeBytes);
}
private:
AlignedBuffer LhsBuffer;
AlignedBuffer RhsBuffer;
};
} // namespace libc_benchmarks
} // namespace llvm
#endif // LLVM_LIBC_UTILS_BENCHMARK_MEMORY_BENCHMARK_H
|