File: CodeGen.cpp

package info (click to toggle)
llvm-toolchain-15 1%3A15.0.6-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,554,644 kB
  • sloc: cpp: 5,922,452; ansic: 1,012,136; asm: 674,362; python: 191,568; objc: 73,855; f90: 42,327; lisp: 31,913; pascal: 11,973; javascript: 10,144; sh: 9,421; perl: 7,447; ml: 5,527; awk: 3,523; makefile: 2,520; xml: 885; cs: 573; fortran: 567
file content (652 lines) | stat: -rw-r--r-- 22,672 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
//===-- C++ code generation from NamedFunctionDescriptors -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This code is responsible for generating the "Implementation.cpp" file.
// The file is composed like this:
//
// 1. Includes
// 2. Using statements to help readability.
// 3. Source code for all the mem function implementations.
// 4. The function to retrieve all the function descriptors with their name.
//      llvm::ArrayRef<NamedFunctionDescriptor> getFunctionDescriptors();
// 5. The functions for the benchmarking infrastructure:
//      llvm::ArrayRef<MemcpyConfiguration> getMemcpyConfigurations();
//      llvm::ArrayRef<MemcmpOrBcmpConfiguration> getMemcmpConfigurations();
//      llvm::ArrayRef<MemcmpOrBcmpConfiguration> getBcmpConfigurations();
//      llvm::ArrayRef<MemsetConfiguration> getMemsetConfigurations();
//      llvm::ArrayRef<BzeroConfiguration> getBzeroConfigurations();
//
//
// Sections 3, 4 and 5 are handled by the following namespaces:
// - codegen::functions
// - codegen::descriptors
// - codegen::configurations
//
// The programming style is functionnal. In each of these namespace, the
// original `NamedFunctionDescriptor` object is turned into a different type. We
// make use of overloaded stream operators to format the resulting type into
// either a function, a descriptor or a configuration. The entry point of each
// namespace is the Serialize function.
//
// Note the code here is better understood by starting from the `Serialize`
// function at the end of the file.

#include "automemcpy/CodeGen.h"
#include <cassert>
#include <llvm/ADT/Optional.h>
#include <llvm/ADT/STLExtras.h>
#include <llvm/ADT/StringSet.h>
#include <llvm/Support/FormatVariadic.h>
#include <llvm/Support/raw_ostream.h>
#include <set>

namespace llvm {
namespace automemcpy {
namespace codegen {

// The indentation string.
static constexpr StringRef kIndent = "  ";

// The codegen namespace handles the serialization of a NamedFunctionDescriptor
// into source code for the function, the descriptor and the configuration.

namespace functions {

// This namespace turns a NamedFunctionDescriptor into an actual implementation.
// -----------------------------------------------------------------------------
// e.g.
// static void memcpy_0xB20D4702493C397E(char *__restrict dst,
//                                       const char *__restrict src,
//                                       size_t size) {
//   using namespace __llvm_libc::x86;
//   if(size == 0) return;
//   if(size == 1) return copy<_1>(dst, src);
//   if(size < 4) return copy<HeadTail<_2>>(dst, src, size);
//   if(size < 8) return copy<HeadTail<_4>>(dst, src, size);
//   if(size < 16) return copy<HeadTail<_8>>(dst, src, size);
//   if(size < 32) return copy<HeadTail<_16>>(dst, src, size);
//   return copy<Accelerator>(dst, src, size);
// }

// The `Serialize` method turns a `NamedFunctionDescriptor` into a
// `FunctionImplementation` which holds all the information needed to produce
// the C++ source code.

// An Element with its size (e.g. `_16` in the example above).
struct ElementType {
  size_t Size;
};
// The case `if(size == 0)` is encoded as a the Zero type.
struct Zero {
  StringRef DefaultReturnValue;
};
// An individual size `if(size == X)` is encoded as an Individual type.
struct Individual {
  size_t IfEq;
  ElementType Element;
};
// An overlap strategy is encoded as an Overlap type.
struct Overlap {
  size_t IfLt;
  ElementType Element;
};
// A loop strategy is encoded as a Loop type.
struct Loop {
  size_t IfLt;
  ElementType Element;
};
// An aligned loop strategy is encoded as an AlignedLoop type.
struct AlignedLoop {
  size_t IfLt;
  ElementType Element;
  ElementType Alignment;
  StringRef AlignTo;
};
// The accelerator strategy.
struct Accelerator {
  size_t IfLt;
};
// The Context stores data about the function type.
struct Context {
  StringRef FunctionReturnType; // e.g. void* or int
  StringRef FunctionArgs;
  StringRef ElementOp; // copy, three_way_compare, splat_set, ...
  StringRef FixedSizeArgs;
  StringRef RuntimeSizeArgs;
  StringRef AlignArg1;
  StringRef AlignArg2;
  StringRef DefaultReturnValue;
};
// A detailed representation of the function implementation mapped from the
// NamedFunctionDescriptor.
struct FunctionImplementation {
  Context Ctx;
  StringRef Name;
  std::vector<Individual> Individuals;
  std::vector<Overlap> Overlaps;
  Optional<Loop> Loop;
  Optional<AlignedLoop> AlignedLoop;
  Optional<Accelerator> Accelerator;
  ElementTypeClass ElementClass;
};

// Returns the Context for each FunctionType.
static Context getCtx(FunctionType FT) {
  switch (FT) {
  case FunctionType::MEMCPY:
    return {"void",
            "(char *__restrict dst, const char *__restrict src, size_t size)",
            "copy",
            "(dst, src)",
            "(dst, src, size)",
            "Arg::Dst",
            "Arg::Src",
            ""};
  case FunctionType::MEMCMP:
    return {"int",
            "(const char * lhs, const char * rhs, size_t size)",
            "three_way_compare",
            "(lhs, rhs)",
            "(lhs, rhs, size)",
            "Arg::Lhs",
            "Arg::Rhs",
            "0"};
  case FunctionType::MEMSET:
    return {"void",
            "(char * dst, int value, size_t size)",
            "splat_set",
            "(dst, value)",
            "(dst, value, size)",
            "Arg::Dst",
            "Arg::Src",
            ""};
  case FunctionType::BZERO:
    return {"void",           "(char * dst, size_t size)",
            "splat_set",      "(dst, 0)",
            "(dst, 0, size)", "Arg::Dst",
            "Arg::Src",       ""};
  default:
    report_fatal_error("Not yet implemented");
  }
}

static StringRef getAligntoString(const Context &Ctx, const AlignArg &AlignTo) {
  switch (AlignTo) {
  case AlignArg::_1:
    return Ctx.AlignArg1;
  case AlignArg::_2:
    return Ctx.AlignArg2;
  case AlignArg::ARRAY_SIZE:
    report_fatal_error("logic error");
  }
}

static raw_ostream &operator<<(raw_ostream &Stream, const ElementType &E) {
  return Stream << '_' << E.Size;
}
static raw_ostream &operator<<(raw_ostream &Stream, const Individual &O) {
  return Stream << O.Element;
}
static raw_ostream &operator<<(raw_ostream &Stream, const Overlap &O) {
  return Stream << "HeadTail<" << O.Element << '>';
}
static raw_ostream &operator<<(raw_ostream &Stream, const Loop &O) {
  return Stream << "Loop<" << O.Element << '>';
}
static raw_ostream &operator<<(raw_ostream &Stream, const AlignedLoop &O) {
  return Stream << "Align<" << O.Alignment << ',' << O.AlignTo << ">::Then<"
                << Loop{O.IfLt, O.Element} << ">";
}
static raw_ostream &operator<<(raw_ostream &Stream, const Accelerator &O) {
  return Stream << "Accelerator";
}

template <typename T> struct IfEq {
  StringRef Op;
  StringRef Args;
  const T &Element;
};

template <typename T> struct IfLt {
  StringRef Op;
  StringRef Args;
  const T &Element;
};

static raw_ostream &operator<<(raw_ostream &Stream, const Zero &O) {
  Stream << kIndent << "if(size == 0) return";
  if (!O.DefaultReturnValue.empty())
    Stream << ' ' << O.DefaultReturnValue;
  return Stream << ";\n";
}

template <typename T>
static raw_ostream &operator<<(raw_ostream &Stream, const IfEq<T> &O) {
  return Stream << kIndent << "if(size == " << O.Element.IfEq << ") return "
                << O.Op << '<' << O.Element << '>' << O.Args << ";\n";
}

template <typename T>
static raw_ostream &operator<<(raw_ostream &Stream, const IfLt<T> &O) {
  Stream << kIndent;
  if (O.Element.IfLt != kMaxSize)
    Stream << "if(size < " << O.Element.IfLt << ") ";
  return Stream << "return " << O.Op << '<' << O.Element << '>' << O.Args
                << ";\n";
}

static raw_ostream &operator<<(raw_ostream &Stream,
                               const ElementTypeClass &Class) {
  switch (Class) {
  case ElementTypeClass::SCALAR:
    return Stream << "scalar";
  case ElementTypeClass::BUILTIN:
    return Stream << "builtin";
  case ElementTypeClass::NATIVE:
    // FIXME: the framework should provide a `native` namespace that redirect to
    // x86, arm or other architectures.
    return Stream << "x86";
  }
}

static raw_ostream &operator<<(raw_ostream &Stream,
                               const FunctionImplementation &FI) {
  const auto &Ctx = FI.Ctx;
  Stream << "static " << Ctx.FunctionReturnType << ' ' << FI.Name
         << Ctx.FunctionArgs << " {\n";
  Stream << kIndent << "using namespace __llvm_libc::" << FI.ElementClass
         << ";\n";
  for (const auto &I : FI.Individuals)
    if (I.Element.Size == 0)
      Stream << Zero{Ctx.DefaultReturnValue};
    else
      Stream << IfEq<Individual>{Ctx.ElementOp, Ctx.FixedSizeArgs, I};
  for (const auto &O : FI.Overlaps)
    Stream << IfLt<Overlap>{Ctx.ElementOp, Ctx.RuntimeSizeArgs, O};
  if (const auto &C = FI.Loop)
    Stream << IfLt<Loop>{Ctx.ElementOp, Ctx.RuntimeSizeArgs, *C};
  if (const auto &C = FI.AlignedLoop)
    Stream << IfLt<AlignedLoop>{Ctx.ElementOp, Ctx.RuntimeSizeArgs, *C};
  if (const auto &C = FI.Accelerator)
    Stream << IfLt<Accelerator>{Ctx.ElementOp, Ctx.RuntimeSizeArgs, *C};
  return Stream << "}\n";
}

// Turns a `NamedFunctionDescriptor` into a `FunctionImplementation` unfolding
// the contiguous and overlap region into several statements. The zero case is
// also mapped to its own type.
static FunctionImplementation
getImplementation(const NamedFunctionDescriptor &NamedFD) {
  const FunctionDescriptor &FD = NamedFD.Desc;
  FunctionImplementation Impl;
  Impl.Ctx = getCtx(FD.Type);
  Impl.Name = NamedFD.Name;
  Impl.ElementClass = FD.ElementClass;
  if (auto C = FD.Contiguous)
    for (size_t I = C->Span.Begin; I < C->Span.End; ++I)
      Impl.Individuals.push_back(Individual{I, ElementType{I}});
  if (auto C = FD.Overlap)
    for (size_t I = C->Span.Begin; I < C->Span.End; I *= 2)
      Impl.Overlaps.push_back(Overlap{2 * I, ElementType{I}});
  if (const auto &L = FD.Loop)
    Impl.Loop = Loop{L->Span.End, ElementType{L->BlockSize}};
  if (const auto &AL = FD.AlignedLoop)
    Impl.AlignedLoop = AlignedLoop{
        AL->Loop.Span.End, ElementType{AL->Loop.BlockSize},
        ElementType{AL->Alignment}, getAligntoString(Impl.Ctx, AL->AlignTo)};
  if (const auto &A = FD.Accelerator)
    Impl.Accelerator = Accelerator{A->Span.End};
  return Impl;
}

static void Serialize(raw_ostream &Stream,
                      ArrayRef<NamedFunctionDescriptor> Descriptors) {

  for (const auto &FD : Descriptors)
    Stream << getImplementation(FD);
}

} // namespace functions

namespace descriptors {

// This namespace generates the getFunctionDescriptors function:
// -------------------------------------------------------------
// e.g.
// ArrayRef<NamedFunctionDescriptor> getFunctionDescriptors() {
//   static constexpr NamedFunctionDescriptor kDescriptors[] = {
//     {"memcpy_0xE00E29EE73994E2B",{FunctionType::MEMCPY,llvm::None,llvm::None,llvm::None,llvm::None,Accelerator{{0,kMaxSize}},ElementTypeClass::NATIVE}},
//     {"memcpy_0x8661D80472487AB5",{FunctionType::MEMCPY,Contiguous{{0,1}},llvm::None,llvm::None,llvm::None,Accelerator{{1,kMaxSize}},ElementTypeClass::NATIVE}},
//     ...
//   };
//   return makeArrayRef(kDescriptors);
// }

static raw_ostream &operator<<(raw_ostream &Stream, const SizeSpan &SS) {
  Stream << "{" << SS.Begin << ',';
  if (SS.End == kMaxSize)
    Stream << "kMaxSize";
  else
    Stream << SS.End;
  return Stream << '}';
}
static raw_ostream &operator<<(raw_ostream &Stream, const Contiguous &O) {
  return Stream << "Contiguous{" << O.Span << '}';
}
static raw_ostream &operator<<(raw_ostream &Stream, const Overlap &O) {
  return Stream << "Overlap{" << O.Span << '}';
}
static raw_ostream &operator<<(raw_ostream &Stream, const Loop &O) {
  return Stream << "Loop{" << O.Span << ',' << O.BlockSize << '}';
}
static raw_ostream &operator<<(raw_ostream &Stream, const AlignArg &O) {
  switch (O) {
  case AlignArg::_1:
    return Stream << "AlignArg::_1";
  case AlignArg::_2:
    return Stream << "AlignArg::_2";
  case AlignArg::ARRAY_SIZE:
    report_fatal_error("logic error");
  }
}
static raw_ostream &operator<<(raw_ostream &Stream, const AlignedLoop &O) {
  return Stream << "AlignedLoop{" << O.Loop << ',' << O.Alignment << ','
                << O.AlignTo << '}';
}
static raw_ostream &operator<<(raw_ostream &Stream, const Accelerator &O) {
  return Stream << "Accelerator{" << O.Span << '}';
}
static raw_ostream &operator<<(raw_ostream &Stream, const ElementTypeClass &O) {
  switch (O) {
  case ElementTypeClass::SCALAR:
    return Stream << "ElementTypeClass::SCALAR";
  case ElementTypeClass::BUILTIN:
    return Stream << "ElementTypeClass::BUILTIN";
  case ElementTypeClass::NATIVE:
    return Stream << "ElementTypeClass::NATIVE";
  }
}
static raw_ostream &operator<<(raw_ostream &Stream, const FunctionType &T) {
  switch (T) {
  case FunctionType::MEMCPY:
    return Stream << "FunctionType::MEMCPY";
  case FunctionType::MEMCMP:
    return Stream << "FunctionType::MEMCMP";
  case FunctionType::BCMP:
    return Stream << "FunctionType::BCMP";
  case FunctionType::MEMSET:
    return Stream << "FunctionType::MEMSET";
  case FunctionType::BZERO:
    return Stream << "FunctionType::BZERO";
  }
}
template <typename T>
static raw_ostream &operator<<(raw_ostream &Stream,
                               const llvm::Optional<T> &MaybeT) {
  if (MaybeT)
    return Stream << *MaybeT;
  return Stream << "llvm::None";
}
static raw_ostream &operator<<(raw_ostream &Stream,
                               const FunctionDescriptor &FD) {
  return Stream << '{' << FD.Type << ',' << FD.Contiguous << ',' << FD.Overlap
                << ',' << FD.Loop << ',' << FD.AlignedLoop << ','
                << FD.Accelerator << ',' << FD.ElementClass << '}';
}
static raw_ostream &operator<<(raw_ostream &Stream,
                               const NamedFunctionDescriptor &NFD) {
  return Stream << '{' << '"' << NFD.Name << '"' << ',' << NFD.Desc << '}';
}
template <typename T>
static raw_ostream &operator<<(raw_ostream &Stream,
                               const std::vector<T> &VectorT) {
  Stream << '{';
  bool First = true;
  for (const auto &Obj : VectorT) {
    if (!First)
      Stream << ',';
    Stream << Obj;
    First = false;
  }
  return Stream << '}';
}

static void Serialize(raw_ostream &Stream,
                      ArrayRef<NamedFunctionDescriptor> Descriptors) {
  Stream << R"(ArrayRef<NamedFunctionDescriptor> getFunctionDescriptors() {
  static constexpr NamedFunctionDescriptor kDescriptors[] = {
)";
  for (size_t I = 0, E = Descriptors.size(); I < E; ++I) {
    Stream << kIndent << kIndent << Descriptors[I] << ",\n";
  }
  Stream << R"(  };
  return makeArrayRef(kDescriptors);
}
)";
}

} // namespace descriptors

namespace configurations {

// This namespace generates the getXXXConfigurations functions:
// ------------------------------------------------------------
// e.g.
// llvm::ArrayRef<MemcpyConfiguration> getMemcpyConfigurations() {
//   using namespace __llvm_libc;
//   static constexpr MemcpyConfiguration kConfigurations[] = {
//     {Wrap<memcpy_0xE00E29EE73994E2B>, "memcpy_0xE00E29EE73994E2B"},
//     {Wrap<memcpy_0x8661D80472487AB5>, "memcpy_0x8661D80472487AB5"},
//     ...
//   };
//   return llvm::makeArrayRef(kConfigurations);
// }

// The `Wrap` template function is provided in the `Main` function below.
// It is used to adapt the gnerated code to the prototype of the C function.
// For instance, the generated code for a `memcpy` takes `char*` pointers and
// returns nothing but the original C `memcpy` function take and returns `void*`
// pointers.

struct FunctionName {
  FunctionType ForType;
};

struct ReturnType {
  FunctionType ForType;
};

struct Configuration {
  FunctionName Name;
  ReturnType Type;
  std::vector<const NamedFunctionDescriptor *> Descriptors;
};

static raw_ostream &operator<<(raw_ostream &Stream, const FunctionName &FN) {
  switch (FN.ForType) {
  case FunctionType::MEMCPY:
    return Stream << "getMemcpyConfigurations";
  case FunctionType::MEMCMP:
    return Stream << "getMemcmpConfigurations";
  case FunctionType::BCMP:
    return Stream << "getBcmpConfigurations";
  case FunctionType::MEMSET:
    return Stream << "getMemsetConfigurations";
  case FunctionType::BZERO:
    return Stream << "getBzeroConfigurations";
  }
}

static raw_ostream &operator<<(raw_ostream &Stream, const ReturnType &RT) {
  switch (RT.ForType) {
  case FunctionType::MEMCPY:
    return Stream << "MemcpyConfiguration";
  case FunctionType::MEMCMP:
  case FunctionType::BCMP:
    return Stream << "MemcmpOrBcmpConfiguration";
  case FunctionType::MEMSET:
    return Stream << "MemsetConfiguration";
  case FunctionType::BZERO:
    return Stream << "BzeroConfiguration";
  }
}

static raw_ostream &operator<<(raw_ostream &Stream,
                               const NamedFunctionDescriptor *FD) {
  return Stream << formatv("{Wrap<{0}>, \"{0}\"}", FD->Name);
}

static raw_ostream &
operator<<(raw_ostream &Stream,
           const std::vector<const NamedFunctionDescriptor *> &Descriptors) {
  for (size_t I = 0, E = Descriptors.size(); I < E; ++I)
    Stream << kIndent << kIndent << Descriptors[I] << ",\n";
  return Stream;
}

static raw_ostream &operator<<(raw_ostream &Stream, const Configuration &C) {
  Stream << "llvm::ArrayRef<" << C.Type << "> " << C.Name << "() {\n";
  if (C.Descriptors.empty())
    Stream << kIndent << "return {};\n";
  else {
    Stream << kIndent << "using namespace __llvm_libc;\n";
    Stream << kIndent << "static constexpr " << C.Type
           << " kConfigurations[] = {\n";
    Stream << C.Descriptors;
    Stream << kIndent << "};\n";
    Stream << kIndent << "return llvm::makeArrayRef(kConfigurations);\n";
  }
  Stream << "}\n";
  return Stream;
}

static void Serialize(raw_ostream &Stream, FunctionType FT,
                      ArrayRef<NamedFunctionDescriptor> Descriptors) {
  Configuration Conf;
  Conf.Name = {FT};
  Conf.Type = {FT};
  for (const auto &FD : Descriptors)
    if (FD.Desc.Type == FT)
      Conf.Descriptors.push_back(&FD);
  Stream << Conf;
}

} // namespace configurations
static void Serialize(raw_ostream &Stream,
                      ArrayRef<NamedFunctionDescriptor> Descriptors) {
  Stream << "// This file is auto-generated by libc/benchmarks/automemcpy.\n";
  Stream << "// Functions : " << Descriptors.size() << "\n";
  Stream << "\n";
  Stream << "#include \"LibcFunctionPrototypes.h\"\n";
  Stream << "#include \"automemcpy/FunctionDescriptor.h\"\n";
  Stream << "#include \"src/string/memory_utils/elements.h\"\n";
  Stream << "\n";
  Stream << "using llvm::libc_benchmarks::BzeroConfiguration;\n";
  Stream << "using llvm::libc_benchmarks::MemcmpOrBcmpConfiguration;\n";
  Stream << "using llvm::libc_benchmarks::MemcpyConfiguration;\n";
  Stream << "using llvm::libc_benchmarks::MemmoveConfiguration;\n";
  Stream << "using llvm::libc_benchmarks::MemsetConfiguration;\n";
  Stream << "\n";
  Stream << "namespace __llvm_libc {\n";
  Stream << "\n";
  codegen::functions::Serialize(Stream, Descriptors);
  Stream << "\n";
  Stream << "} // namespace __llvm_libc\n";
  Stream << "\n";
  Stream << "namespace llvm {\n";
  Stream << "namespace automemcpy {\n";
  Stream << "\n";
  codegen::descriptors::Serialize(Stream, Descriptors);
  Stream << "\n";
  Stream << "} // namespace automemcpy\n";
  Stream << "} // namespace llvm\n";
  Stream << "\n";
  Stream << R"(
using MemcpyStub = void (*)(char *__restrict, const char *__restrict, size_t);
template <MemcpyStub Foo>
void *Wrap(void *__restrict dst, const void *__restrict src, size_t size) {
  Foo(reinterpret_cast<char *__restrict>(dst),
      reinterpret_cast<const char *__restrict>(src), size);
  return dst;
}
)";
  codegen::configurations::Serialize(Stream, FunctionType::MEMCPY, Descriptors);
  Stream << R"(
using MemcmpStub = int (*)(const char *, const char *, size_t);
template <MemcmpStub Foo>
int Wrap(const void *lhs, const void *rhs, size_t size) {
  return Foo(reinterpret_cast<const char *>(lhs),
             reinterpret_cast<const char *>(rhs), size);
}
)";
  codegen::configurations::Serialize(Stream, FunctionType::MEMCMP, Descriptors);
  codegen::configurations::Serialize(Stream, FunctionType::BCMP, Descriptors);
  Stream << R"(
using MemsetStub = void (*)(char *, int, size_t);
template <MemsetStub Foo> void *Wrap(void *dst, int value, size_t size) {
  Foo(reinterpret_cast<char *>(dst), value, size);
  return dst;
}
)";
  codegen::configurations::Serialize(Stream, FunctionType::MEMSET, Descriptors);
  Stream << R"(
using BzeroStub = void (*)(char *, size_t);
template <BzeroStub Foo> void Wrap(void *dst, size_t size) {
  Foo(reinterpret_cast<char *>(dst), size);
}
)";
  codegen::configurations::Serialize(Stream, FunctionType::BZERO, Descriptors);
  Stream << R"(
llvm::ArrayRef<MemmoveConfiguration> getMemmoveConfigurations() {
  return {};
}
)";
  Stream << "// Functions : " << Descriptors.size() << "\n";
}

} // namespace codegen

// Stores `VolatileStr` into a cache and returns a StringRef of the cached
// version.
StringRef getInternalizedString(std::string VolatileStr) {
  static llvm::StringSet StringCache;
  return StringCache.insert(std::move(VolatileStr)).first->getKey();
}

static StringRef getString(FunctionType FT) {
  switch (FT) {
  case FunctionType::MEMCPY:
    return "memcpy";
  case FunctionType::MEMCMP:
    return "memcmp";
  case FunctionType::BCMP:
    return "bcmp";
  case FunctionType::MEMSET:
    return "memset";
  case FunctionType::BZERO:
    return "bzero";
  }
}

void Serialize(raw_ostream &Stream, ArrayRef<FunctionDescriptor> Descriptors) {
  std::vector<NamedFunctionDescriptor> FunctionDescriptors;
  FunctionDescriptors.reserve(Descriptors.size());
  for (auto &FD : Descriptors) {
    FunctionDescriptors.emplace_back();
    FunctionDescriptors.back().Name = getInternalizedString(
        formatv("{0}_{1:X16}", getString(FD.Type), FD.id()));
    FunctionDescriptors.back().Desc = std::move(FD);
  }
  // Sort functions so they are easier to spot in the generated C++ file.
  std::sort(FunctionDescriptors.begin(), FunctionDescriptors.end(),
            [](const NamedFunctionDescriptor &A,
               const NamedFunctionDescriptor &B) { return A.Desc < B.Desc; });
  codegen::Serialize(Stream, FunctionDescriptors);
}

} // namespace automemcpy
} // namespace llvm