1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
|
//===-- Generate random but valid function descriptors -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "automemcpy/RandomFunctionGenerator.h"
#include <llvm/ADT/None.h>
#include <llvm/ADT/StringRef.h>
#include <llvm/Support/raw_ostream.h>
#include <set>
namespace llvm {
namespace automemcpy {
// Exploration parameters
// ----------------------
// Here we define a set of values that will contraint the exploration and
// limit combinatorial explosion.
// We limit the number of cases for individual sizes to sizes up to 4.
// More individual sizes don't bring much over the overlapping strategy.
static constexpr int kMaxIndividualSize = 4;
// We limit Overlapping Strategy to sizes up to 256.
// An overlap of 256B means accessing 128B at once which is usually not
// feasible by current CPUs. We rely on the compiler to generate multiple
// loads/stores if needed but higher sizes are unlikely to benefit from hardware
// acceleration.
static constexpr int kMaxOverlapSize = 256;
// For the loop strategies, we make sure that they iterate at least a certain
// number of times to amortize the cost of looping.
static constexpr int kLoopMinIter = 3;
static constexpr int kAlignedLoopMinIter = 2;
// We restrict the size of the block of data to handle in a loop.
// Generally speaking block size <= 16 perform poorly.
static constexpr int kLoopBlockSize[] = {16, 32, 64};
// We restrict alignment to the following values.
static constexpr int kLoopAlignments[] = {16, 32, 64};
// We make sure that the region bounds are one of the following values.
static constexpr int kAnchors[] = {0, 1, 2, 4, 8, 16, 32, 48,
64, 96, 128, 256, 512, 1024, kMaxSize};
// We also allow disabling loops, aligned loops and accelerators.
static constexpr bool kDisableLoop = false;
static constexpr bool kDisableAlignedLoop = false;
static constexpr bool kDisableAccelerator = false;
// For memcpy, we can also explore whether aligning on source or destination has
// an effect.
static constexpr bool kExploreAlignmentArg = true;
// The function we generate code for.
// BCMP is specifically disabled for now.
static constexpr int kFunctionTypes[] = {
(int)FunctionType::MEMCPY,
(int)FunctionType::MEMCMP,
// (int)FunctionType::BCMP,
(int)FunctionType::MEMSET,
(int)FunctionType::BZERO,
};
// The actual implementation of each function can be handled via primitive types
// (SCALAR), vector types where available (NATIVE) or by the compiler (BUILTIN).
// We want to move toward delegating the code generation entirely to the
// compiler but for now we have to make use of -per microarchitecture- custom
// implementations. Scalar being more portable but also less performant, we
// remove it as well.
static constexpr int kElementClasses[] = {
// (int)ElementTypeClass::SCALAR,
(int)ElementTypeClass::NATIVE,
// (int)ElementTypeClass::BUILTIN
};
RandomFunctionGenerator::RandomFunctionGenerator()
: Solver(Context), Type(Context.int_const("Type")),
ContiguousBegin(Context.int_const("ContiguousBegin")),
ContiguousEnd(Context.int_const("ContiguousEnd")),
OverlapBegin(Context.int_const("OverlapBegin")),
OverlapEnd(Context.int_const("OverlapEnd")),
LoopBegin(Context.int_const("LoopBegin")),
LoopEnd(Context.int_const("LoopEnd")),
LoopBlockSize(Context.int_const("LoopBlockSize")),
AlignedLoopBegin(Context.int_const("AlignedLoopBegin")),
AlignedLoopEnd(Context.int_const("AlignedLoopEnd")),
AlignedLoopBlockSize(Context.int_const("AlignedLoopBlockSize")),
AlignedAlignment(Context.int_const("AlignedAlignment")),
AlignedArg(Context.int_const("AlignedArg")),
AcceleratorBegin(Context.int_const("AcceleratorBegin")),
AcceleratorEnd(Context.int_const("AcceleratorEnd")),
ElementClass(Context.int_const("ElementClass")) {
// All possible functions.
Solver.add(inSetConstraint(Type, kFunctionTypes));
// Add constraints for region bounds.
addBoundsAndAnchors(ContiguousBegin, ContiguousEnd);
addBoundsAndAnchors(OverlapBegin, OverlapEnd);
addBoundsAndAnchors(LoopBegin, LoopEnd);
addBoundsAndAnchors(AlignedLoopBegin, AlignedLoopEnd);
addBoundsAndAnchors(AcceleratorBegin, AcceleratorEnd);
// We always consider strategies in this order, and we
// always end with the `Accelerator` strategy, as it's typically more
// efficient for large sizes.
// Contiguous <= Overlap <= Loop <= AlignedLoop <= Accelerator
Solver.add(ContiguousEnd == OverlapBegin);
Solver.add(OverlapEnd == LoopBegin);
Solver.add(LoopEnd == AlignedLoopBegin);
Solver.add(AlignedLoopEnd == AcceleratorBegin);
// Fix endpoints: The minimum size that we want to copy is 0, and we always
// start with the `Contiguous` strategy. The max size is `kMaxSize`.
Solver.add(ContiguousBegin == 0);
Solver.add(AcceleratorEnd == kMaxSize);
// Contiguous
Solver.add(ContiguousEnd <= kMaxIndividualSize + 1);
// Overlap
Solver.add(OverlapEnd <= kMaxOverlapSize + 1);
// Overlap only ever makes sense when accessing multiple bytes at a time.
// i.e. Overlap<1> is useless.
Solver.add(OverlapBegin == OverlapEnd || OverlapBegin >= 2);
// Loop
addLoopConstraints(LoopBegin, LoopEnd, LoopBlockSize, kLoopMinIter);
// Aligned Loop
addLoopConstraints(AlignedLoopBegin, AlignedLoopEnd, AlignedLoopBlockSize,
kAlignedLoopMinIter);
Solver.add(inSetConstraint(AlignedAlignment, kLoopAlignments));
Solver.add(AlignedLoopBegin == AlignedLoopEnd || AlignedLoopBegin >= 64);
Solver.add(AlignedLoopBlockSize >= AlignedAlignment);
Solver.add(AlignedLoopBlockSize >= LoopBlockSize);
z3::expr IsMemcpy = Type == (int)FunctionType::MEMCPY;
z3::expr ExploreAlignment = IsMemcpy && kExploreAlignmentArg;
Solver.add(
(ExploreAlignment &&
inSetConstraint(AlignedArg, {(int)AlignArg::_1, (int)AlignArg::_2})) ||
(!ExploreAlignment && AlignedArg == (int)AlignArg::_1));
// Accelerator
Solver.add(IsMemcpy ||
(AcceleratorBegin ==
AcceleratorEnd)); // Only Memcpy has accelerator for now.
// Element classes
Solver.add(inSetConstraint(ElementClass, kElementClasses));
if (kDisableLoop)
Solver.add(LoopBegin == LoopEnd);
if (kDisableAlignedLoop)
Solver.add(AlignedLoopBegin == AlignedLoopEnd);
if (kDisableAccelerator)
Solver.add(AcceleratorBegin == AcceleratorEnd);
}
// Creates SizeSpan from Begin/End values.
// Returns llvm::None if Begin==End.
static Optional<SizeSpan> AsSizeSpan(size_t Begin, size_t End) {
if (Begin == End)
return None;
SizeSpan SS;
SS.Begin = Begin;
SS.End = End;
return SS;
}
// Generic method to create a `Region` struct with a Span or None if span is
// empty.
template <typename Region>
static Optional<Region> As(size_t Begin, size_t End) {
if (auto Span = AsSizeSpan(Begin, End)) {
Region Output;
Output.Span = *Span;
return Output;
}
return None;
}
// Returns a Loop struct or None if span is empty.
static Optional<Loop> AsLoop(size_t Begin, size_t End, size_t BlockSize) {
if (auto Span = AsSizeSpan(Begin, End)) {
Loop Output;
Output.Span = *Span;
Output.BlockSize = BlockSize;
return Output;
}
return None;
}
// Returns an AlignedLoop struct or None if span is empty.
static Optional<AlignedLoop> AsAlignedLoop(size_t Begin, size_t End,
size_t BlockSize, size_t Alignment,
AlignArg AlignTo) {
if (auto Loop = AsLoop(Begin, End, BlockSize)) {
AlignedLoop Output;
Output.Loop = *Loop;
Output.Alignment = Alignment;
Output.AlignTo = AlignTo;
return Output;
}
return None;
}
Optional<FunctionDescriptor> RandomFunctionGenerator::next() {
if (Solver.check() != z3::sat)
return {};
z3::model m = Solver.get_model();
// Helper method to get the current numerical value of a z3::expr.
const auto E = [&m](z3::expr &V) -> int {
return m.eval(V).get_numeral_int();
};
// Fill is the function descriptor to return.
FunctionDescriptor R;
R.Type = FunctionType(E(Type));
R.Contiguous = As<Contiguous>(E(ContiguousBegin), E(ContiguousEnd));
R.Overlap = As<Overlap>(E(OverlapBegin), E(OverlapEnd));
R.Loop = AsLoop(E(LoopBegin), E(LoopEnd), E(LoopBlockSize));
R.AlignedLoop = AsAlignedLoop(E(AlignedLoopBegin), E(AlignedLoopEnd),
E(AlignedLoopBlockSize), E(AlignedAlignment),
AlignArg(E(AlignedArg)));
R.Accelerator = As<Accelerator>(E(AcceleratorBegin), E(AcceleratorEnd));
R.ElementClass = ElementTypeClass(E(ElementClass));
// Express current state as a set of constraints.
z3::expr CurrentLayout =
(Type == E(Type)) && (ContiguousBegin == E(ContiguousBegin)) &&
(ContiguousEnd == E(ContiguousEnd)) &&
(OverlapBegin == E(OverlapBegin)) && (OverlapEnd == E(OverlapEnd)) &&
(LoopBegin == E(LoopBegin)) && (LoopEnd == E(LoopEnd)) &&
(LoopBlockSize == E(LoopBlockSize)) &&
(AlignedLoopBegin == E(AlignedLoopBegin)) &&
(AlignedLoopEnd == E(AlignedLoopEnd)) &&
(AlignedLoopBlockSize == E(AlignedLoopBlockSize)) &&
(AlignedAlignment == E(AlignedAlignment)) &&
(AlignedArg == E(AlignedArg)) &&
(AcceleratorBegin == E(AcceleratorBegin)) &&
(AcceleratorEnd == E(AcceleratorEnd)) &&
(ElementClass == E(ElementClass));
// Ask solver to never show this configuration ever again.
Solver.add(!CurrentLayout);
return R;
}
// Make sure `Variable` is one of the provided values.
z3::expr RandomFunctionGenerator::inSetConstraint(z3::expr &Variable,
ArrayRef<int> Values) const {
z3::expr_vector Args(Variable.ctx());
for (int Value : Values)
Args.push_back(Variable == Value);
return z3::mk_or(Args);
}
void RandomFunctionGenerator::addBoundsAndAnchors(z3::expr &Begin,
z3::expr &End) {
// Begin and End are picked amongst a set of predefined values.
Solver.add(inSetConstraint(Begin, kAnchors));
Solver.add(inSetConstraint(End, kAnchors));
Solver.add(Begin >= 0);
Solver.add(Begin <= End);
Solver.add(End <= kMaxSize);
}
void RandomFunctionGenerator::addLoopConstraints(const z3::expr &LoopBegin,
const z3::expr &LoopEnd,
z3::expr &LoopBlockSize,
int LoopMinIter) {
Solver.add(inSetConstraint(LoopBlockSize, kLoopBlockSize));
Solver.add(LoopBegin == LoopEnd ||
(LoopBegin > (LoopMinIter * LoopBlockSize)));
}
} // namespace automemcpy
} // namespace llvm
|