1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
//===-- Automemcpy Json Results Analyzer Test ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "automemcpy/ResultAnalyzer.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
using testing::DoubleNear;
using testing::ElementsAre;
using testing::Pair;
using testing::SizeIs;
namespace llvm {
namespace automemcpy {
namespace {
TEST(AutomemcpyJsonResultsAnalyzer, getThroughputsOneSample) {
static constexpr FunctionId Foo1 = {"memcpy1", FunctionType::MEMCPY};
static constexpr DistributionId DistA = {{"A"}};
static constexpr SampleId Id = {Foo1, DistA};
static constexpr Sample kSamples[] = {
Sample{Id, SampleType::ITERATION, 4},
Sample{Id, SampleType::AGGREGATE, -1}, // Aggegates gets discarded
};
const std::vector<FunctionData> Data = getThroughputs(kSamples);
EXPECT_THAT(Data, SizeIs(1));
EXPECT_THAT(Data[0].Id, Foo1);
EXPECT_THAT(Data[0].PerDistributionData, SizeIs(1));
// A single value is provided.
const auto &DistributionData = Data[0].PerDistributionData.lookup(DistA.Name);
EXPECT_THAT(DistributionData.BytesPerSecondMedian, 4);
EXPECT_THAT(DistributionData.BytesPerSecondMean, 4);
EXPECT_THAT(DistributionData.BytesPerSecondVariance, 0);
}
TEST(AutomemcpyJsonResultsAnalyzer, getThroughputsManySamplesSameBucket) {
static constexpr FunctionId Foo1 = {"memcpy1", FunctionType::MEMCPY};
static constexpr DistributionId DistA = {{"A"}};
static constexpr SampleId Id = {Foo1, DistA};
static constexpr Sample kSamples[] = {Sample{Id, SampleType::ITERATION, 4},
Sample{Id, SampleType::ITERATION, 5},
Sample{Id, SampleType::ITERATION, 5}};
const std::vector<FunctionData> Data = getThroughputs(kSamples);
EXPECT_THAT(Data, SizeIs(1));
EXPECT_THAT(Data[0].Id, Foo1);
EXPECT_THAT(Data[0].PerDistributionData, SizeIs(1));
// When multiple values are provided we pick the median one (here median of 4,
// 5, 5).
const auto &DistributionData = Data[0].PerDistributionData.lookup(DistA.Name);
EXPECT_THAT(DistributionData.BytesPerSecondMedian, 5);
EXPECT_THAT(DistributionData.BytesPerSecondMean, DoubleNear(4.6, 0.1));
EXPECT_THAT(DistributionData.BytesPerSecondVariance, DoubleNear(0.33, 0.01));
}
TEST(AutomemcpyJsonResultsAnalyzer, getThroughputsServeralFunctionAndDist) {
static constexpr FunctionId Foo1 = {"memcpy1", FunctionType::MEMCPY};
static constexpr DistributionId DistA = {{"A"}};
static constexpr FunctionId Foo2 = {"memcpy2", FunctionType::MEMCPY};
static constexpr DistributionId DistB = {{"B"}};
static constexpr Sample kSamples[] = {
Sample{{Foo1, DistA}, SampleType::ITERATION, 1},
Sample{{Foo1, DistB}, SampleType::ITERATION, 2},
Sample{{Foo2, DistA}, SampleType::ITERATION, 3},
Sample{{Foo2, DistB}, SampleType::ITERATION, 4}};
// Data is aggregated per function.
const std::vector<FunctionData> Data = getThroughputs(kSamples);
EXPECT_THAT(Data, SizeIs(2)); // 2 functions Foo1 and Foo2.
// Each function has data for both distributions DistA and DistB.
EXPECT_THAT(Data[0].PerDistributionData, SizeIs(2));
EXPECT_THAT(Data[1].PerDistributionData, SizeIs(2));
}
TEST(AutomemcpyJsonResultsAnalyzer, getScore) {
static constexpr FunctionId Foo1 = {"memcpy1", FunctionType::MEMCPY};
static constexpr FunctionId Foo2 = {"memcpy2", FunctionType::MEMCPY};
static constexpr FunctionId Foo3 = {"memcpy3", FunctionType::MEMCPY};
static constexpr DistributionId Dist = {{"A"}};
static constexpr Sample kSamples[] = {
Sample{{Foo1, Dist}, SampleType::ITERATION, 1},
Sample{{Foo2, Dist}, SampleType::ITERATION, 2},
Sample{{Foo3, Dist}, SampleType::ITERATION, 3}};
// Data is aggregated per function.
std::vector<FunctionData> Data = getThroughputs(kSamples);
// Sort Data by function name so we can test them.
std::sort(
Data.begin(), Data.end(),
[](const FunctionData &A, const FunctionData &B) { return A.Id < B.Id; });
EXPECT_THAT(Data[0].Id, Foo1);
EXPECT_THAT(Data[0].PerDistributionData.lookup("A").BytesPerSecondMedian, 1);
EXPECT_THAT(Data[1].Id, Foo2);
EXPECT_THAT(Data[1].PerDistributionData.lookup("A").BytesPerSecondMedian, 2);
EXPECT_THAT(Data[2].Id, Foo3);
EXPECT_THAT(Data[2].PerDistributionData.lookup("A").BytesPerSecondMedian, 3);
// Normalizes throughput per distribution.
fillScores(Data);
EXPECT_THAT(Data[0].PerDistributionData.lookup("A").Score, 0);
EXPECT_THAT(Data[1].PerDistributionData.lookup("A").Score, 0.5);
EXPECT_THAT(Data[2].PerDistributionData.lookup("A").Score, 1);
}
TEST(AutomemcpyJsonResultsAnalyzer, castVotes) {
static constexpr double kAbsErr = 0.01;
static constexpr FunctionId Foo1 = {"memcpy1", FunctionType::MEMCPY};
static constexpr FunctionId Foo2 = {"memcpy2", FunctionType::MEMCPY};
static constexpr FunctionId Foo3 = {"memcpy3", FunctionType::MEMCPY};
static constexpr DistributionId DistA = {{"A"}};
static constexpr DistributionId DistB = {{"B"}};
static constexpr Sample kSamples[] = {
Sample{{Foo1, DistA}, SampleType::ITERATION, 0},
Sample{{Foo1, DistB}, SampleType::ITERATION, 30},
Sample{{Foo2, DistA}, SampleType::ITERATION, 1},
Sample{{Foo2, DistB}, SampleType::ITERATION, 100},
Sample{{Foo3, DistA}, SampleType::ITERATION, 7},
Sample{{Foo3, DistB}, SampleType::ITERATION, 100},
};
// DistA Thoughput ranges from 0 to 7.
// DistB Thoughput ranges from 30 to 100.
// Data is aggregated per function.
std::vector<FunctionData> Data = getThroughputs(kSamples);
// Sort Data by function name so we can test them.
std::sort(
Data.begin(), Data.end(),
[](const FunctionData &A, const FunctionData &B) { return A.Id < B.Id; });
// Normalizes throughput per distribution.
fillScores(Data);
// Cast votes
castVotes(Data);
EXPECT_THAT(Data[0].Id, Foo1);
EXPECT_THAT(Data[1].Id, Foo2);
EXPECT_THAT(Data[2].Id, Foo3);
const auto GetDistData = [&Data](size_t Index, StringRef Name) {
return Data[Index].PerDistributionData.lookup(Name);
};
// Distribution A
// Throughput is 0, 1 and 7, so normalized scores are 0, 1/7 and 1.
EXPECT_THAT(GetDistData(0, "A").Score, DoubleNear(0, kAbsErr));
EXPECT_THAT(GetDistData(1, "A").Score, DoubleNear(1. / 7, kAbsErr));
EXPECT_THAT(GetDistData(2, "A").Score, DoubleNear(1, kAbsErr));
// which are turned into grades BAD, MEDIOCRE and EXCELLENT.
EXPECT_THAT(GetDistData(0, "A").Grade, Grade::BAD);
EXPECT_THAT(GetDistData(1, "A").Grade, Grade::MEDIOCRE);
EXPECT_THAT(GetDistData(2, "A").Grade, Grade::EXCELLENT);
// Distribution B
// Throughput is 30, 100 and 100, so normalized scores are 0, 1 and 1.
EXPECT_THAT(GetDistData(0, "B").Score, DoubleNear(0, kAbsErr));
EXPECT_THAT(GetDistData(1, "B").Score, DoubleNear(1, kAbsErr));
EXPECT_THAT(GetDistData(2, "B").Score, DoubleNear(1, kAbsErr));
// which are turned into grades BAD, EXCELLENT and EXCELLENT.
EXPECT_THAT(GetDistData(0, "B").Grade, Grade::BAD);
EXPECT_THAT(GetDistData(1, "B").Grade, Grade::EXCELLENT);
EXPECT_THAT(GetDistData(2, "B").Grade, Grade::EXCELLENT);
// Now looking from the functions point of view.
EXPECT_THAT(Data[0].ScoresGeoMean, DoubleNear(0, kAbsErr));
EXPECT_THAT(Data[1].ScoresGeoMean, DoubleNear(1. * (1. / 7), kAbsErr));
EXPECT_THAT(Data[2].ScoresGeoMean, DoubleNear(1, kAbsErr));
// Note the array is indexed by GradeEnum values (EXCELLENT=0 / BAD = 6)
EXPECT_THAT(Data[0].GradeHisto, ElementsAre(0, 0, 0, 0, 0, 0, 2));
EXPECT_THAT(Data[1].GradeHisto, ElementsAre(1, 0, 0, 0, 0, 1, 0));
EXPECT_THAT(Data[2].GradeHisto, ElementsAre(2, 0, 0, 0, 0, 0, 0));
EXPECT_THAT(Data[0].FinalGrade, Grade::BAD);
EXPECT_THAT(Data[1].FinalGrade, Grade::MEDIOCRE);
EXPECT_THAT(Data[2].FinalGrade, Grade::EXCELLENT);
}
} // namespace
} // namespace automemcpy
} // namespace llvm
|