1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
/*
* Copyright (c) 2014,2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <clc/clc.h>
#include "math.h"
#include "../clcmacro.h"
_CLC_OVERLOAD _CLC_DEF float acospi(float x) {
// Computes arccos(x).
// The argument is first reduced by noting that arccos(x)
// is invalid for abs(x) > 1. For denormal and small
// arguments arccos(x) = pi/2 to machine accuracy.
// Remaining argument ranges are handled as follows.
// For abs(x) <= 0.5 use
// arccos(x) = pi/2 - arcsin(x)
// = pi/2 - (x + x^3*R(x^2))
// where R(x^2) is a rational minimax approximation to
// (arcsin(x) - x)/x^3.
// For abs(x) > 0.5 exploit the identity:
// arccos(x) = pi - 2*arcsin(sqrt(1-x)/2)
// together with the above rational approximation, and
// reconstruct the terms carefully.
// Some constants and split constants.
const float pi = 3.1415926535897933e+00f;
const float piby2_head = 1.5707963267948965580e+00f; /* 0x3ff921fb54442d18 */
const float piby2_tail = 6.12323399573676603587e-17f; /* 0x3c91a62633145c07 */
uint ux = as_uint(x);
uint aux = ux & ~SIGNBIT_SP32;
int xneg = ux != aux;
int xexp = (int)(aux >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32;
float y = as_float(aux);
// transform if |x| >= 0.5
int transform = xexp >= -1;
float y2 = y * y;
float yt = 0.5f * (1.0f - y);
float r = transform ? yt : y2;
// Use a rational approximation for [0.0, 0.5]
float a = mad(r, mad(r, mad(r, -0.00396137437848476485201154797087F, -0.0133819288943925804214011424456F),
-0.0565298683201845211985026327361F),
0.184161606965100694821398249421F);
float b = mad(r, -0.836411276854206731913362287293F, 1.10496961524520294485512696706F);
float u = r * MATH_DIVIDE(a, b);
float s = MATH_SQRT(r);
y = s;
float s1 = as_float(as_uint(s) & 0xffff0000);
float c = MATH_DIVIDE(r - s1 * s1, s + s1);
// float rettn = 1.0f - MATH_DIVIDE(2.0f * (s + (y * u - piby2_tail)), pi);
float rettn = 1.0f - MATH_DIVIDE(2.0f * (s + mad(y, u, -piby2_tail)), pi);
// float rettp = MATH_DIVIDE(2.0F * s1 + (2.0F * c + 2.0F * y * u), pi);
float rettp = MATH_DIVIDE(2.0f*(s1 + mad(y, u, c)), pi);
float rett = xneg ? rettn : rettp;
// float ret = MATH_DIVIDE(piby2_head - (x - (piby2_tail - x * u)), pi);
float ret = MATH_DIVIDE(piby2_head - (x - mad(x, -u, piby2_tail)), pi);
ret = transform ? rett : ret;
ret = aux > 0x3f800000U ? as_float(QNANBITPATT_SP32) : ret;
ret = ux == 0x3f800000U ? 0.0f : ret;
ret = ux == 0xbf800000U ? 1.0f : ret;
ret = xexp < -26 ? 0.5f : ret;
return ret;
}
_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, acospi, float)
#ifdef cl_khr_fp64
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
_CLC_OVERLOAD _CLC_DEF double acospi(double x) {
// Computes arccos(x).
// The argument is first reduced by noting that arccos(x)
// is invalid for abs(x) > 1. For denormal and small
// arguments arccos(x) = pi/2 to machine accuracy.
// Remaining argument ranges are handled as follows.
// For abs(x) <= 0.5 use
// arccos(x) = pi/2 - arcsin(x)
// = pi/2 - (x + x^3*R(x^2))
// where R(x^2) is a rational minimax approximation to
// (arcsin(x) - x)/x^3.
// For abs(x) > 0.5 exploit the identity:
// arccos(x) = pi - 2*arcsin(sqrt(1-x)/2)
// together with the above rational approximation, and
// reconstruct the terms carefully.
const double pi = 0x1.921fb54442d18p+1;
const double piby2_tail = 6.12323399573676603587e-17; /* 0x3c91a62633145c07 */
double y = fabs(x);
int xneg = as_int2(x).hi < 0;
int xexp = (as_int2(y).hi >> 20) - EXPBIAS_DP64;
// abs(x) >= 0.5
int transform = xexp >= -1;
// Transform y into the range [0,0.5)
double r1 = 0.5 * (1.0 - y);
double s = sqrt(r1);
double r = y * y;
r = transform ? r1 : r;
y = transform ? s : y;
// Use a rational approximation for [0.0, 0.5]
double un = fma(r,
fma(r,
fma(r,
fma(r,
fma(r, 0.0000482901920344786991880522822991,
0.00109242697235074662306043804220),
-0.0549989809235685841612020091328),
0.275558175256937652532686256258),
-0.445017216867635649900123110649),
0.227485835556935010735943483075);
double ud = fma(r,
fma(r,
fma(r,
fma(r, 0.105869422087204370341222318533,
-0.943639137032492685763471240072),
2.76568859157270989520376345954),
-3.28431505720958658909889444194),
1.36491501334161032038194214209);
double u = r * MATH_DIVIDE(un, ud);
// Reconstruct acos carefully in transformed region
double res1 = fma(-2.0, MATH_DIVIDE(s + fma(y, u, -piby2_tail), pi), 1.0);
double s1 = as_double(as_ulong(s) & 0xffffffff00000000UL);
double c = MATH_DIVIDE(fma(-s1, s1, r), s + s1);
double res2 = MATH_DIVIDE(fma(2.0, s1, fma(2.0, c, 2.0 * y * u)), pi);
res1 = xneg ? res1 : res2;
res2 = 0.5 - fma(x, u, x) / pi;
res1 = transform ? res1 : res2;
const double qnan = as_double(QNANBITPATT_DP64);
res2 = x == 1.0 ? 0.0 : qnan;
res2 = x == -1.0 ? 1.0 : res2;
res1 = xexp >= 0 ? res2 : res1;
res1 = xexp < -56 ? 0.5 : res1;
return res1;
}
_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, acospi, double)
#endif
|