1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
|
/*
* Copyright (c) 2014,2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <clc/clc.h>
#include "math.h"
#include "ep_log.h"
#include "../clcmacro.h"
_CLC_OVERLOAD _CLC_DEF float asinh(float x) {
uint ux = as_uint(x);
uint ax = ux & EXSIGNBIT_SP32;
uint xsgn = ax ^ ux;
// |x| <= 2
float t = x * x;
float a = mad(t,
mad(t,
mad(t,
mad(t, -1.177198915954942694e-4f, -4.162727710583425360e-2f),
-5.063201055468483248e-1f),
-1.480204186473758321f),
-1.152965835871758072f);
float b = mad(t,
mad(t,
mad(t,
mad(t, 6.284381367285534560e-2f, 1.260024978680227945f),
6.582362487198468066f),
11.99423176003939087f),
6.917795026025976739f);
float q = MATH_DIVIDE(a, b);
float z1 = mad(x*t, q, x);
// |x| > 2
// Arguments greater than 1/sqrt(epsilon) in magnitude are
// approximated by asinh(x) = ln(2) + ln(abs(x)), with sign of x
// Arguments such that 4.0 <= abs(x) <= 1/sqrt(epsilon) are
// approximated by asinhf(x) = ln(abs(x) + sqrt(x*x+1))
// with the sign of x (see Abramowitz and Stegun 4.6.20)
float absx = as_float(ax);
int hi = ax > 0x46000000U;
float y = MATH_SQRT(absx * absx + 1.0f) + absx;
y = hi ? absx : y;
float r = log(y) + (hi ? 0x1.62e430p-1f : 0.0f);
float z2 = as_float(xsgn | as_uint(r));
float z = ax <= 0x40000000 ? z1 : z2;
z = ax < 0x39800000U | ax >= PINFBITPATT_SP32 ? x : z;
return z;
}
_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, asinh, float)
#ifdef cl_khr_fp64
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
#define NA0 -0.12845379283524906084997e0
#define NA1 -0.21060688498409799700819e0
#define NA2 -0.10188951822578188309186e0
#define NA3 -0.13891765817243625541799e-1
#define NA4 -0.10324604871728082428024e-3
#define DA0 0.77072275701149440164511e0
#define DA1 0.16104665505597338100747e1
#define DA2 0.11296034614816689554875e1
#define DA3 0.30079351943799465092429e0
#define DA4 0.235224464765951442265117e-1
#define NB0 -0.12186605129448852495563e0
#define NB1 -0.19777978436593069928318e0
#define NB2 -0.94379072395062374824320e-1
#define NB3 -0.12620141363821680162036e-1
#define NB4 -0.903396794842691998748349e-4
#define DB0 0.73119630776696495279434e0
#define DB1 0.15157170446881616648338e1
#define DB2 0.10524909506981282725413e1
#define DB3 0.27663713103600182193817e0
#define DB4 0.21263492900663656707646e-1
#define NC0 -0.81210026327726247622500e-1
#define NC1 -0.12327355080668808750232e0
#define NC2 -0.53704925162784720405664e-1
#define NC3 -0.63106739048128554465450e-2
#define NC4 -0.35326896180771371053534e-4
#define DC0 0.48726015805581794231182e0
#define DC1 0.95890837357081041150936e0
#define DC2 0.62322223426940387752480e0
#define DC3 0.15028684818508081155141e0
#define DC4 0.10302171620320141529445e-1
#define ND0 -0.4638179204422665073e-1
#define ND1 -0.7162729496035415183e-1
#define ND2 -0.3247795155696775148e-1
#define ND3 -0.4225785421291932164e-2
#define ND4 -0.3808984717603160127e-4
#define ND5 0.8023464184964125826e-6
#define DD0 0.2782907534642231184e0
#define DD1 0.5549945896829343308e0
#define DD2 0.3700732511330698879e0
#define DD3 0.9395783438240780722e-1
#define DD4 0.7200057974217143034e-2
#define NE0 -0.121224194072430701e-4
#define NE1 -0.273145455834305218e-3
#define NE2 -0.152866982560895737e-2
#define NE3 -0.292231744584913045e-2
#define NE4 -0.174670900236060220e-2
#define NE5 -0.891754209521081538e-12
#define DE0 0.499426632161317606e-4
#define DE1 0.139591210395547054e-2
#define DE2 0.107665231109108629e-1
#define DE3 0.325809818749873406e-1
#define DE4 0.415222526655158363e-1
#define DE5 0.186315628774716763e-1
#define NF0 -0.195436610112717345e-4
#define NF1 -0.233315515113382977e-3
#define NF2 -0.645380957611087587e-3
#define NF3 -0.478948863920281252e-3
#define NF4 -0.805234112224091742e-12
#define NF5 0.246428598194879283e-13
#define DF0 0.822166621698664729e-4
#define DF1 0.135346265620413852e-2
#define DF2 0.602739242861830658e-2
#define DF3 0.972227795510722956e-2
#define DF4 0.510878800983771167e-2
#define NG0 -0.209689451648100728e-6
#define NG1 -0.219252358028695992e-5
#define NG2 -0.551641756327550939e-5
#define NG3 -0.382300259826830258e-5
#define NG4 -0.421182121910667329e-17
#define NG5 0.492236019998237684e-19
#define DG0 0.889178444424237735e-6
#define DG1 0.131152171690011152e-4
#define DG2 0.537955850185616847e-4
#define DG3 0.814966175170941864e-4
#define DG4 0.407786943832260752e-4
#define NH0 -0.178284193496441400e-6
#define NH1 -0.928734186616614974e-6
#define NH2 -0.923318925566302615e-6
#define NH3 -0.776417026702577552e-19
#define NH4 0.290845644810826014e-21
#define DH0 0.786694697277890964e-6
#define DH1 0.685435665630965488e-5
#define DH2 0.153780175436788329e-4
#define DH3 0.984873520613417917e-5
#define NI0 -0.538003743384069117e-10
#define NI1 -0.273698654196756169e-9
#define NI2 -0.268129826956403568e-9
#define NI3 -0.804163374628432850e-29
#define DI0 0.238083376363471960e-9
#define DI1 0.203579344621125934e-8
#define DI2 0.450836980450693209e-8
#define DI3 0.286005148753497156e-8
_CLC_OVERLOAD _CLC_DEF double asinh(double x) {
const double rteps = 0x1.6a09e667f3bcdp-27;
const double recrteps = 0x1.6a09e667f3bcdp+26;
// log2_lead and log2_tail sum to an extra-precise version of log(2)
const double log2_lead = 0x1.62e42ep-1;
const double log2_tail = 0x1.efa39ef35793cp-25;
ulong ux = as_ulong(x);
ulong ax = ux & ~SIGNBIT_DP64;
double absx = as_double(ax);
double t = x * x;
double pn, tn, pd, td;
// XXX we are betting here that we can evaluate 8 pairs of
// polys faster than we can grab 12 coefficients from a table
// This also uses fewer registers
// |x| >= 8
pn = fma(t, fma(t, fma(t, NI3, NI2), NI1), NI0);
pd = fma(t, fma(t, fma(t, DI3, DI2), DI1), DI0);
tn = fma(t, fma(t, fma(t, fma(t, NH4, NH3), NH2), NH1), NH0);
td = fma(t, fma(t, fma(t, DH3, DH2), DH1), DH0);
pn = absx < 8.0 ? tn : pn;
pd = absx < 8.0 ? td : pd;
tn = fma(t, fma(t, fma(t, fma(t, fma(t, NG5, NG4), NG3), NG2), NG1), NG0);
td = fma(t, fma(t, fma(t, fma(t, DG4, DG3), DG2), DG1), DG0);
pn = absx < 4.0 ? tn : pn;
pd = absx < 4.0 ? td : pd;
tn = fma(t, fma(t, fma(t, fma(t, fma(t, NF5, NF4), NF3), NF2), NF1), NF0);
td = fma(t, fma(t, fma(t, fma(t, DF4, DF3), DF2), DF1), DF0);
pn = absx < 2.0 ? tn : pn;
pd = absx < 2.0 ? td : pd;
tn = fma(t, fma(t, fma(t, fma(t, fma(t, NE5, NE4), NE3), NE2), NE1), NE0);
td = fma(t, fma(t, fma(t, fma(t, fma(t, DE5, DE4), DE3), DE2), DE1), DE0);
pn = absx < 1.5 ? tn : pn;
pd = absx < 1.5 ? td : pd;
tn = fma(t, fma(t, fma(t, fma(t, fma(t, ND5, ND4), ND3), ND2), ND1), ND0);
td = fma(t, fma(t, fma(t, fma(t, DD4, DD3), DD2), DD1), DD0);
pn = absx <= 1.0 ? tn : pn;
pd = absx <= 1.0 ? td : pd;
tn = fma(t, fma(t, fma(t, fma(t, NC4, NC3), NC2), NC1), NC0);
td = fma(t, fma(t, fma(t, fma(t, DC4, DC3), DC2), DC1), DC0);
pn = absx < 0.75 ? tn : pn;
pd = absx < 0.75 ? td : pd;
tn = fma(t, fma(t, fma(t, fma(t, NB4, NB3), NB2), NB1), NB0);
td = fma(t, fma(t, fma(t, fma(t, DB4, DB3), DB2), DB1), DB0);
pn = absx < 0.5 ? tn : pn;
pd = absx < 0.5 ? td : pd;
tn = fma(t, fma(t, fma(t, fma(t, NA4, NA3), NA2), NA1), NA0);
td = fma(t, fma(t, fma(t, fma(t, DA4, DA3), DA2), DA1), DA0);
pn = absx < 0.25 ? tn : pn;
pd = absx < 0.25 ? td : pd;
double pq = MATH_DIVIDE(pn, pd);
// |x| <= 1
double result1 = fma(absx*t, pq, absx);
// Other ranges
int xout = absx <= 32.0 | absx > recrteps;
double y = absx + sqrt(fma(absx, absx, 1.0));
y = xout ? absx : y;
double r1, r2;
int xexp;
__clc_ep_log(y, &xexp, &r1, &r2);
double dxexp = (double)(xexp + xout);
r1 = fma(dxexp, log2_lead, r1);
r2 = fma(dxexp, log2_tail, r2);
// 1 < x <= 32
double v2 = (pq + 0.25) / t;
double r = v2 + r1;
double s = ((r1 - r) + v2) + r2;
double v1 = r + s;
v2 = (r - v1) + s;
double result2 = v1 + v2;
// x > 32
double result3 = r1 + r2;
double ret = absx > 1.0 ? result2 : result1;
ret = absx > 32.0 ? result3 : ret;
ret = x < 0.0 ? -ret : ret;
// NaN, +-Inf, or x small enough that asinh(x) = x
ret = ax >= PINFBITPATT_DP64 | absx < rteps ? x : ret;
return ret;
}
_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, asinh, double)
#endif
|