1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
/*
* Copyright (c) 2014,2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <clc/clc.h>
#include "math.h"
#include "tables.h"
#include "../clcmacro.h"
_CLC_OVERLOAD _CLC_DEF float atan2pi(float y, float x) {
const float pi = 0x1.921fb6p+1f;
float ax = fabs(x);
float ay = fabs(y);
float v = min(ax, ay);
float u = max(ax, ay);
// Scale since u could be large, as in "regular" divide
float s = u > 0x1.0p+96f ? 0x1.0p-32f : 1.0f;
float vbyu = s * MATH_DIVIDE(v, s*u);
float vbyu2 = vbyu * vbyu;
float p = mad(vbyu2, mad(vbyu2, -0x1.7e1f78p-9f, -0x1.7d1b98p-3f), -0x1.5554d0p-2f) * vbyu2 * vbyu;
float q = mad(vbyu2, mad(vbyu2, 0x1.1a714cp-2f, 0x1.287c56p+0f), 1.0f);
// Octant 0 result
float a = MATH_DIVIDE(mad(p, MATH_RECIP(q), vbyu), pi);
// Fix up 3 other octants
float at = 0.5f - a;
a = ay > ax ? at : a;
at = 1.0f - a;
a = x < 0.0F ? at : a;
// y == 0 => 0 for x >= 0, pi for x < 0
at = as_int(x) < 0 ? 1.0f : 0.0f;
a = y == 0.0f ? at : a;
// if (!FINITE_ONLY()) {
// x and y are +- Inf
at = x > 0.0f ? 0.25f : 0.75f;
a = ax == INFINITY & ay == INFINITY ? at : a;
// x or y is NaN
a = isnan(x) | isnan(y) ? as_float(QNANBITPATT_SP32) : a;
// }
// Fixup sign and return
return copysign(a, y);
}
_CLC_BINARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, atan2pi, float, float)
#ifdef cl_khr_fp64
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
_CLC_OVERLOAD _CLC_DEF double atan2pi(double y, double x) {
const double pi = 3.1415926535897932e+00; /* 0x400921fb54442d18 */
const double pi_head = 3.1415926218032836e+00; /* 0x400921fb50000000 */
const double pi_tail = 3.1786509547056392e-08; /* 0x3e6110b4611a6263 */
const double piby2_head = 1.5707963267948965e+00; /* 0x3ff921fb54442d18 */
const double piby2_tail = 6.1232339957367660e-17; /* 0x3c91a62633145c07 */
double x2 = x;
int xneg = as_int2(x).hi < 0;
int xexp = (as_int2(x).hi >> 20) & 0x7ff;
double y2 = y;
int yneg = as_int2(y).hi < 0;
int yexp = (as_int2(y).hi >> 20) & 0x7ff;
int cond2 = (xexp < 1021) & (yexp < 1021);
int diffexp = yexp - xexp;
// Scale up both x and y if they are both below 1/4
double x1 = ldexp(x, 1024);
int xexp1 = (as_int2(x1).hi >> 20) & 0x7ff;
double y1 = ldexp(y, 1024);
int yexp1 = (as_int2(y1).hi >> 20) & 0x7ff;
int diffexp1 = yexp1 - xexp1;
diffexp = cond2 ? diffexp1 : diffexp;
x = cond2 ? x1 : x;
y = cond2 ? y1 : y;
// General case: take absolute values of arguments
double u = fabs(x);
double v = fabs(y);
// Swap u and v if necessary to obtain 0 < v < u. Compute v/u.
int swap_vu = u < v;
double uu = u;
u = swap_vu ? v : u;
v = swap_vu ? uu : v;
double vbyu = v / u;
double q1, q2;
// General values of v/u. Use a look-up table and series expansion.
{
double val = vbyu > 0.0625 ? vbyu : 0.063;
int index = convert_int(fma(256.0, val, 0.5));
double2 tv = USE_TABLE(atan_jby256_tbl, (index - 16));
q1 = tv.s0;
q2 = tv.s1;
double c = (double)index * 0x1.0p-8;
// We're going to scale u and v by 2^(-u_exponent) to bring them close to 1
// u_exponent could be EMAX so we have to do it in 2 steps
int m = -((int)(as_ulong(u) >> EXPSHIFTBITS_DP64) - EXPBIAS_DP64);
double um = ldexp(u, m);
double vm = ldexp(v, m);
// 26 leading bits of u
double u1 = as_double(as_ulong(um) & 0xfffffffff8000000UL);
double u2 = um - u1;
double r = MATH_DIVIDE(fma(-c, u2, fma(-c, u1, vm)), fma(c, vm, um));
// Polynomial approximation to atan(r)
double s = r * r;
q2 = q2 + fma((s * fma(-s, 0.19999918038989143496, 0.33333333333224095522)), -r, r);
}
double q3, q4;
{
q3 = 0.0;
q4 = vbyu;
}
double q5, q6;
{
double u1 = as_double(as_ulong(u) & 0xffffffff00000000UL);
double u2 = u - u1;
double vu1 = as_double(as_ulong(vbyu) & 0xffffffff00000000UL);
double vu2 = vbyu - vu1;
q5 = 0.0;
double s = vbyu * vbyu;
q6 = vbyu + fma(-vbyu * s,
fma(-s,
fma(-s,
fma(-s,
fma(-s, 0.90029810285449784439E-01,
0.11110736283514525407),
0.14285713561807169030),
0.19999999999393223405),
0.33333333333333170500),
MATH_DIVIDE(fma(-u, vu2, fma(-u2, vu1, fma(-u1, vu1, v))), u));
}
q3 = vbyu < 0x1.d12ed0af1a27fp-27 ? q3 : q5;
q4 = vbyu < 0x1.d12ed0af1a27fp-27 ? q4 : q6;
q1 = vbyu > 0.0625 ? q1 : q3;
q2 = vbyu > 0.0625 ? q2 : q4;
// Tidy-up according to which quadrant the arguments lie in
double res1, res2, res3, res4;
q1 = swap_vu ? piby2_head - q1 : q1;
q2 = swap_vu ? piby2_tail - q2 : q2;
q1 = xneg ? pi_head - q1 : q1;
q2 = xneg ? pi_tail - q2 : q2;
q1 = MATH_DIVIDE(q1 + q2, pi);
res4 = yneg ? -q1 : q1;
res1 = yneg ? -0.75 : 0.75;
res2 = yneg ? -0.25 : 0.25;
res3 = xneg ? res1 : res2;
res3 = isinf(y2) & isinf(x2) ? res3 : res4;
res1 = yneg ? -1.0 : 1.0;
// abs(x)/abs(y) > 2^56 and x < 0
res3 = (diffexp < -56 && xneg) ? res1 : res3;
res4 = MATH_DIVIDE(MATH_DIVIDE(y, x), pi);
// x positive and dominant over y by a factor of 2^28
res3 = diffexp < -28 & xneg == 0 ? res4 : res3;
// abs(y)/abs(x) > 2^56
res4 = yneg ? -0.5 : 0.5; // atan(y/x) is insignificant compared to piby2
res3 = diffexp > 56 ? res4 : res3;
res3 = x2 == 0.0 ? res4 : res3; // Zero x gives +- pi/2 depending on sign of y
res4 = xneg ? res1 : y2;
res3 = y2 == 0.0 ? res4 : res3; // Zero y gives +-0 for positive x and +-pi for negative x
res3 = isnan(y2) ? y2 : res3;
res3 = isnan(x2) ? x2 : res3;
return res3;
}
_CLC_BINARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, atan2pi, double, double)
#endif
|