1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
/*
* Copyright (c) 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <clc/clc.h>
#include "config.h"
#include "math.h"
#include "tables.h"
#include "../clcmacro.h"
// Algorithm:
//
// e^x = 2^(x/ln(2)) = 2^(x*(64/ln(2))/64)
//
// x*(64/ln(2)) = n + f, |f| <= 0.5, n is integer
// n = 64*m + j, 0 <= j < 64
//
// e^x = 2^((64*m + j + f)/64)
// = (2^m) * (2^(j/64)) * 2^(f/64)
// = (2^m) * (2^(j/64)) * e^(f*(ln(2)/64))
//
// f = x*(64/ln(2)) - n
// r = f*(ln(2)/64) = x - n*(ln(2)/64)
//
// e^x = (2^m) * (2^(j/64)) * e^r
//
// (2^(j/64)) is precomputed
//
// e^r = 1 + r + (r^2)/2! + (r^3)/3! + (r^4)/4! + (r^5)/5!
// e^r = 1 + q
//
// q = r + (r^2)/2! + (r^3)/3! + (r^4)/4! + (r^5)/5!
//
// e^x = (2^m) * ( (2^(j/64)) + q*(2^(j/64)) )
_CLC_DEF _CLC_OVERLOAD float __clc_exp10(float x)
{
const float X_MAX = 0x1.344134p+5f; // 128*log2/log10 : 38.53183944498959
const float X_MIN = -0x1.66d3e8p+5f; // -149*log2/log10 : -44.8534693539332
const float R_64_BY_LOG10_2 = 0x1.a934f0p+7f; // 64*log10/log2 : 212.6033980727912
const float R_LOG10_2_BY_64_LD = 0x1.340000p-8f; // log2/(64 * log10) lead : 0.004699707
const float R_LOG10_2_BY_64_TL = 0x1.04d426p-18f; // log2/(64 * log10) tail : 0.00000388665057
const float R_LN10 = 0x1.26bb1cp+1f;
int return_nan = isnan(x);
int return_inf = x > X_MAX;
int return_zero = x < X_MIN;
int n = convert_int(x * R_64_BY_LOG10_2);
float fn = (float)n;
int j = n & 0x3f;
int m = n >> 6;
int m2 = m << EXPSHIFTBITS_SP32;
float r;
r = R_LN10 * mad(fn, -R_LOG10_2_BY_64_TL, mad(fn, -R_LOG10_2_BY_64_LD, x));
// Truncated Taylor series for e^r
float z2 = mad(mad(mad(r, 0x1.555556p-5f, 0x1.555556p-3f), r, 0x1.000000p-1f), r*r, r);
float two_to_jby64 = USE_TABLE(exp_tbl, j);
z2 = mad(two_to_jby64, z2, two_to_jby64);
float z2s = z2 * as_float(0x1 << (m + 149));
float z2n = as_float(as_int(z2) + m2);
z2 = m <= -126 ? z2s : z2n;
z2 = return_inf ? as_float(PINFBITPATT_SP32) : z2;
z2 = return_zero ? 0.0f : z2;
z2 = return_nan ? x : z2;
return z2;
}
_CLC_UNARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_exp10, float)
#ifdef cl_khr_fp64
_CLC_DEF _CLC_OVERLOAD double __clc_exp10(double x)
{
const double X_MAX = 0x1.34413509f79ffp+8; // 1024*ln(2)/ln(10)
const double X_MIN = -0x1.434e6420f4374p+8; // -1074*ln(2)/ln(10)
const double R_64_BY_LOG10_2 = 0x1.a934f0979a371p+7; // 64*ln(10)/ln(2)
const double R_LOG10_2_BY_64_LD = 0x1.3441350000000p-8; // head ln(2)/(64*ln(10))
const double R_LOG10_2_BY_64_TL = 0x1.3ef3fde623e25p-37; // tail ln(2)/(64*ln(10))
const double R_LN10 = 0x1.26bb1bbb55516p+1; // ln(10)
int n = convert_int(x * R_64_BY_LOG10_2);
double dn = (double)n;
int j = n & 0x3f;
int m = n >> 6;
double r = R_LN10 * fma(-R_LOG10_2_BY_64_TL, dn, fma(-R_LOG10_2_BY_64_LD, dn, x));
// 6 term tail of Taylor expansion of e^r
double z2 = r * fma(r,
fma(r,
fma(r,
fma(r,
fma(r, 0x1.6c16c16c16c17p-10, 0x1.1111111111111p-7),
0x1.5555555555555p-5),
0x1.5555555555555p-3),
0x1.0000000000000p-1),
1.0);
double2 tv = USE_TABLE(two_to_jby64_ep_tbl, j);
z2 = fma(tv.s0 + tv.s1, z2, tv.s1) + tv.s0;
int small_value = (m < -1022) || ((m == -1022) && (z2 < 1.0));
int n1 = m >> 2;
int n2 = m-n1;
double z3= z2 * as_double(((long)n1 + 1023) << 52);
z3 *= as_double(((long)n2 + 1023) << 52);
z2 = ldexp(z2, m);
z2 = small_value ? z3: z2;
z2 = isnan(x) ? x : z2;
z2 = x > X_MAX ? as_double(PINFBITPATT_DP64) : z2;
z2 = x < X_MIN ? 0.0 : z2;
return z2;
}
_CLC_UNARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, double, __clc_exp10, double)
#endif
|