1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
/*
* Copyright (c) 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <clc/clc.h>
#include <math/clc_remainder.h>
#include "../clcmacro.h"
#include "config.h"
#include "math.h"
_CLC_DEF _CLC_OVERLOAD float __clc_remquo(float x, float y, __private int *quo)
{
x = __clc_flush_denormal_if_not_supported(x);
y = __clc_flush_denormal_if_not_supported(y);
int ux = as_int(x);
int ax = ux & EXSIGNBIT_SP32;
float xa = as_float(ax);
int sx = ux ^ ax;
int ex = ax >> EXPSHIFTBITS_SP32;
int uy = as_int(y);
int ay = uy & EXSIGNBIT_SP32;
float ya = as_float(ay);
int sy = uy ^ ay;
int ey = ay >> EXPSHIFTBITS_SP32;
float xr = as_float(0x3f800000 | (ax & 0x007fffff));
float yr = as_float(0x3f800000 | (ay & 0x007fffff));
int c;
int k = ex - ey;
uint q = 0;
while (k > 0) {
c = xr >= yr;
q = (q << 1) | c;
xr -= c ? yr : 0.0f;
xr += xr;
--k;
}
c = xr > yr;
q = (q << 1) | c;
xr -= c ? yr : 0.0f;
int lt = ex < ey;
q = lt ? 0 : q;
xr = lt ? xa : xr;
yr = lt ? ya : yr;
c = (yr < 2.0f * xr) | ((yr == 2.0f * xr) & ((q & 0x1) == 0x1));
xr -= c ? yr : 0.0f;
q += c;
float s = as_float(ey << EXPSHIFTBITS_SP32);
xr *= lt ? 1.0f : s;
int qsgn = sx == sy ? 1 : -1;
int quot = (q & 0x7f) * qsgn;
c = ax == ay;
quot = c ? qsgn : quot;
xr = c ? 0.0f : xr;
xr = as_float(sx ^ as_int(xr));
c = ax > PINFBITPATT_SP32 | ay > PINFBITPATT_SP32 | ax == PINFBITPATT_SP32 | ay == 0;
quot = c ? 0 : quot;
xr = c ? as_float(QNANBITPATT_SP32) : xr;
*quo = quot;
return xr;
}
// remquo singature is special, we don't have macro for this
#define __VEC_REMQUO(TYPE, VEC_SIZE, HALF_VEC_SIZE) \
_CLC_DEF _CLC_OVERLOAD TYPE##VEC_SIZE __clc_remquo(TYPE##VEC_SIZE x, TYPE##VEC_SIZE y, __private int##VEC_SIZE *quo) \
{ \
int##HALF_VEC_SIZE lo, hi; \
TYPE##VEC_SIZE ret; \
ret.lo = __clc_remquo(x.lo, y.lo, &lo); \
ret.hi = __clc_remquo(x.hi, y.hi, &hi); \
(*quo).lo = lo; \
(*quo).hi = hi; \
return ret; \
}
__VEC_REMQUO(float, 2,)
__VEC_REMQUO(float, 3, 2)
__VEC_REMQUO(float, 4, 2)
__VEC_REMQUO(float, 8, 4)
__VEC_REMQUO(float, 16, 8)
#ifdef cl_khr_fp64
_CLC_DEF _CLC_OVERLOAD double __clc_remquo(double x, double y, __private int *pquo)
{
ulong ux = as_ulong(x);
ulong ax = ux & ~SIGNBIT_DP64;
ulong xsgn = ux ^ ax;
double dx = as_double(ax);
int xexp = convert_int(ax >> EXPSHIFTBITS_DP64);
int xexp1 = 11 - (int) clz(ax & MANTBITS_DP64);
xexp1 = xexp < 1 ? xexp1 : xexp;
ulong uy = as_ulong(y);
ulong ay = uy & ~SIGNBIT_DP64;
double dy = as_double(ay);
int yexp = convert_int(ay >> EXPSHIFTBITS_DP64);
int yexp1 = 11 - (int) clz(ay & MANTBITS_DP64);
yexp1 = yexp < 1 ? yexp1 : yexp;
int qsgn = ((ux ^ uy) & SIGNBIT_DP64) == 0UL ? 1 : -1;
// First assume |x| > |y|
// Set ntimes to the number of times we need to do a
// partial remainder. If the exponent of x is an exact multiple
// of 53 larger than the exponent of y, and the mantissa of x is
// less than the mantissa of y, ntimes will be one too large
// but it doesn't matter - it just means that we'll go round
// the loop below one extra time.
int ntimes = max(0, (xexp1 - yexp1) / 53);
double w = ldexp(dy, ntimes * 53);
w = ntimes == 0 ? dy : w;
double scale = ntimes == 0 ? 1.0 : 0x1.0p-53;
// Each time round the loop we compute a partial remainder.
// This is done by subtracting a large multiple of w
// from x each time, where w is a scaled up version of y.
// The subtraction must be performed exactly in quad
// precision, though the result at each stage can
// fit exactly in a double precision number.
int i;
double t, v, p, pp;
for (i = 0; i < ntimes; i++) {
// Compute integral multiplier
t = trunc(dx / w);
// Compute w * t in quad precision
p = w * t;
pp = fma(w, t, -p);
// Subtract w * t from dx
v = dx - p;
dx = v + (((dx - v) - p) - pp);
// If t was one too large, dx will be negative. Add back one w.
dx += dx < 0.0 ? w : 0.0;
// Scale w down by 2^(-53) for the next iteration
w *= scale;
}
// One more time
// Variable todd says whether the integer t is odd or not
t = floor(dx / w);
long lt = (long)t;
int todd = lt & 1;
p = w * t;
pp = fma(w, t, -p);
v = dx - p;
dx = v + (((dx - v) - p) - pp);
i = dx < 0.0;
todd ^= i;
dx += i ? w : 0.0;
lt -= i;
// At this point, dx lies in the range [0,dy)
// For the remainder function, we need to adjust dx
// so that it lies in the range (-y/2, y/2] by carefully
// subtracting w (== dy == y) if necessary. The rigmarole
// with todd is to get the correct sign of the result
// when x/y lies exactly half way between two integers,
// when we need to choose the even integer.
int al = (2.0*dx > w) | (todd & (2.0*dx == w));
double dxl = dx - (al ? w : 0.0);
int ag = (dx > 0.5*w) | (todd & (dx == 0.5*w));
double dxg = dx - (ag ? w : 0.0);
dx = dy < 0x1.0p+1022 ? dxl : dxg;
lt += dy < 0x1.0p+1022 ? al : ag;
int quo = ((int)lt & 0x7f) * qsgn;
double ret = as_double(xsgn ^ as_ulong(dx));
dx = as_double(ax);
// Now handle |x| == |y|
int c = dx == dy;
t = as_double(xsgn);
quo = c ? qsgn : quo;
ret = c ? t : ret;
// Next, handle |x| < |y|
c = dx < dy;
quo = c ? 0 : quo;
ret = c ? x : ret;
c &= (yexp < 1023 & 2.0*dx > dy) | (dx > 0.5*dy);
quo = c ? qsgn : quo;
// we could use a conversion here instead since qsgn = +-1
p = qsgn == 1 ? -1.0 : 1.0;
t = fma(y, p, x);
ret = c ? t : ret;
// We don't need anything special for |x| == 0
// |y| is 0
c = dy == 0.0;
quo = c ? 0 : quo;
ret = c ? as_double(QNANBITPATT_DP64) : ret;
// y is +-Inf, NaN
c = yexp > BIASEDEMAX_DP64;
quo = c ? 0 : quo;
t = y == y ? x : y;
ret = c ? t : ret;
// x is +=Inf, NaN
c = xexp > BIASEDEMAX_DP64;
quo = c ? 0 : quo;
ret = c ? as_double(QNANBITPATT_DP64) : ret;
*pquo = quo;
return ret;
}
__VEC_REMQUO(double, 2,)
__VEC_REMQUO(double, 3, 2)
__VEC_REMQUO(double, 4, 2)
__VEC_REMQUO(double, 8, 4)
__VEC_REMQUO(double, 16, 8)
#endif
|