1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
/*
* Copyright (c) 2014,2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "math.h"
/*
Algorithm:
Based on:
Ping-Tak Peter Tang
"Table-driven implementation of the logarithm function in IEEE
floating-point arithmetic"
ACM Transactions on Mathematical Software (TOMS)
Volume 16, Issue 4 (December 1990)
x very close to 1.0 is handled differently, for x everywhere else
a brief explanation is given below
x = (2^m)*A
x = (2^m)*(G+g) with (1 <= G < 2) and (g <= 2^(-8))
x = (2^m)*2*(G/2+g/2)
x = (2^m)*2*(F+f) with (0.5 <= F < 1) and (f <= 2^(-9))
Y = (2^(-1))*(2^(-m))*(2^m)*A
Now, range of Y is: 0.5 <= Y < 1
F = 0x80 + (first 7 mantissa bits) + (8th mantissa bit)
Now, range of F is: 128 <= F <= 256
F = F / 256
Now, range of F is: 0.5 <= F <= 1
f = -(Y-F), with (f <= 2^(-9))
log(x) = m*log(2) + log(2) + log(F-f)
log(x) = m*log(2) + log(2) + log(F) + log(1-(f/F))
log(x) = m*log(2) + log(2*F) + log(1-r)
r = (f/F), with (r <= 2^(-8))
r = f*(1/F) with (1/F) precomputed to avoid division
log(x) = m*log(2) + log(G) - poly
log(G) is precomputed
poly = (r + (r^2)/2 + (r^3)/3 + (r^4)/4) + (r^5)/5))
log(2) and log(G) need to be maintained in extra precision
to avoid losing precision in the calculations
For x close to 1.0, we employ the following technique to
ensure faster convergence.
log(x) = log((1+s)/(1-s)) = 2*s + (2/3)*s^3 + (2/5)*s^5 + (2/7)*s^7
x = ((1+s)/(1-s))
x = 1 + r
s = r/(2+r)
*/
_CLC_OVERLOAD _CLC_DEF float
#if defined(COMPILING_LOG2)
log2(float x)
#elif defined(COMPILING_LOG10)
log10(float x)
#else
log(float x)
#endif
{
#if defined(COMPILING_LOG2)
const float LOG2E = 0x1.715476p+0f; // 1.4426950408889634
const float LOG2E_HEAD = 0x1.700000p+0f; // 1.4375
const float LOG2E_TAIL = 0x1.547652p-8f; // 0.00519504072
#elif defined(COMPILING_LOG10)
const float LOG10E = 0x1.bcb7b2p-2f; // 0.43429448190325182
const float LOG10E_HEAD = 0x1.bc0000p-2f; // 0.43359375
const float LOG10E_TAIL = 0x1.6f62a4p-11f; // 0.0007007319
const float LOG10_2_HEAD = 0x1.340000p-2f; // 0.30078125
const float LOG10_2_TAIL = 0x1.04d426p-12f; // 0.000248745637
#else
const float LOG2_HEAD = 0x1.62e000p-1f; // 0.693115234
const float LOG2_TAIL = 0x1.0bfbe8p-15f; // 0.0000319461833
#endif
uint xi = as_uint(x);
uint ax = xi & EXSIGNBIT_SP32;
// Calculations for |x-1| < 2^-4
float r = x - 1.0f;
int near1 = fabs(r) < 0x1.0p-4f;
float u2 = MATH_DIVIDE(r, 2.0f + r);
float corr = u2 * r;
float u = u2 + u2;
float v = u * u;
float znear1, z1, z2;
// 2/(5 * 2^5), 2/(3 * 2^3)
z2 = mad(u, mad(v, 0x1.99999ap-7f, 0x1.555556p-4f)*v, -corr);
#if defined(COMPILING_LOG2)
z1 = as_float(as_int(r) & 0xffff0000);
z2 = z2 + (r - z1);
znear1 = mad(z1, LOG2E_HEAD, mad(z2, LOG2E_HEAD, mad(z1, LOG2E_TAIL, z2*LOG2E_TAIL)));
#elif defined(COMPILING_LOG10)
z1 = as_float(as_int(r) & 0xffff0000);
z2 = z2 + (r - z1);
znear1 = mad(z1, LOG10E_HEAD, mad(z2, LOG10E_HEAD, mad(z1, LOG10E_TAIL, z2*LOG10E_TAIL)));
#else
znear1 = z2 + r;
#endif
// Calculations for x not near 1
int m = (int)(xi >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32;
// Normalize subnormal
uint xis = as_uint(as_float(xi | 0x3f800000) - 1.0f);
int ms = (int)(xis >> EXPSHIFTBITS_SP32) - 253;
int c = m == -127;
m = c ? ms : m;
uint xin = c ? xis : xi;
float mf = (float)m;
uint indx = (xin & 0x007f0000) + ((xin & 0x00008000) << 1);
// F - Y
float f = as_float(0x3f000000 | indx) - as_float(0x3f000000 | (xin & MANTBITS_SP32));
indx = indx >> 16;
r = f * USE_TABLE(log_inv_tbl, indx);
// 1/3, 1/2
float poly = mad(mad(r, 0x1.555556p-2f, 0.5f), r*r, r);
#if defined(COMPILING_LOG2)
float2 tv = USE_TABLE(log2_tbl, indx);
z1 = tv.s0 + mf;
z2 = mad(poly, -LOG2E, tv.s1);
#elif defined(COMPILING_LOG10)
float2 tv = USE_TABLE(log10_tbl, indx);
z1 = mad(mf, LOG10_2_HEAD, tv.s0);
z2 = mad(poly, -LOG10E, mf*LOG10_2_TAIL) + tv.s1;
#else
float2 tv = USE_TABLE(log_tbl, indx);
z1 = mad(mf, LOG2_HEAD, tv.s0);
z2 = mad(mf, LOG2_TAIL, -poly) + tv.s1;
#endif
float z = z1 + z2;
z = near1 ? znear1 : z;
// Corner cases
z = ax >= PINFBITPATT_SP32 ? x : z;
z = xi != ax ? as_float(QNANBITPATT_SP32) : z;
z = ax == 0 ? as_float(NINFBITPATT_SP32) : z;
return z;
}
#ifdef cl_khr_fp64
_CLC_OVERLOAD _CLC_DEF double
#if defined(COMPILING_LOG2)
log2(double x)
#elif defined(COMPILING_LOG10)
log10(double x)
#else
log(double x)
#endif
{
#ifndef COMPILING_LOG2
// log2_lead and log2_tail sum to an extra-precise version of ln(2)
const double log2_lead = 6.93147122859954833984e-01; /* 0x3fe62e42e0000000 */
const double log2_tail = 5.76999904754328540596e-08; /* 0x3e6efa39ef35793c */
#endif
#if defined(COMPILING_LOG10)
// log10e_lead and log10e_tail sum to an extra-precision version of log10(e) (19 bits in lead)
const double log10e_lead = 4.34293746948242187500e-01; /* 0x3fdbcb7800000000 */
const double log10e_tail = 7.3495500964015109100644e-7; /* 0x3ea8a93728719535 */
#elif defined(COMPILING_LOG2)
// log2e_lead and log2e_tail sum to an extra-precision version of log2(e) (19 bits in lead)
const double log2e_lead = 1.44269180297851562500E+00; /* 0x3FF7154400000000 */
const double log2e_tail = 3.23791044778235969970E-06; /* 0x3ECB295C17F0BBBE */
#endif
// log_thresh1 = 9.39412117004394531250e-1 = 0x3fee0faa00000000
// log_thresh2 = 1.06449508666992187500 = 0x3ff1082c00000000
const double log_thresh1 = 0x1.e0faap-1;
const double log_thresh2 = 0x1.1082cp+0;
int is_near = x >= log_thresh1 & x <= log_thresh2;
// Near 1 code
double r = x - 1.0;
double u = r / (2.0 + r);
double correction = r * u;
u = u + u;
double v = u * u;
double r1 = r;
const double ca_1 = 8.33333333333317923934e-02; /* 0x3fb55555555554e6 */
const double ca_2 = 1.25000000037717509602e-02; /* 0x3f89999999bac6d4 */
const double ca_3 = 2.23213998791944806202e-03; /* 0x3f62492307f1519f */
const double ca_4 = 4.34887777707614552256e-04; /* 0x3f3c8034c85dfff0 */
double r2 = fma(u*v, fma(v, fma(v, fma(v, ca_4, ca_3), ca_2), ca_1), -correction);
#if defined(COMPILING_LOG10)
r = r1;
r1 = as_double(as_ulong(r1) & 0xffffffff00000000);
r2 = r2 + (r - r1);
double ret_near = fma(log10e_lead, r1, fma(log10e_lead, r2, fma(log10e_tail, r1, log10e_tail * r2)));
#elif defined(COMPILING_LOG2)
r = r1;
r1 = as_double(as_ulong(r1) & 0xffffffff00000000);
r2 = r2 + (r - r1);
double ret_near = fma(log2e_lead, r1, fma(log2e_lead, r2, fma(log2e_tail, r1, log2e_tail*r2)));
#else
double ret_near = r1 + r2;
#endif
// This is the far from 1 code
// Deal with subnormal
ulong ux = as_ulong(x);
ulong uxs = as_ulong(as_double(0x03d0000000000000UL | ux) - 0x1.0p-962);
int c = ux < IMPBIT_DP64;
ux = c ? uxs : ux;
int expadjust = c ? 60 : 0;
int xexp = ((as_int2(ux).hi >> 20) & 0x7ff) - EXPBIAS_DP64 - expadjust;
double f = as_double(HALFEXPBITS_DP64 | (ux & MANTBITS_DP64));
int index = as_int2(ux).hi >> 13;
index = ((0x80 | (index & 0x7e)) >> 1) + (index & 0x1);
double2 tv = USE_TABLE(ln_tbl, index - 64);
double z1 = tv.s0;
double q = tv.s1;
double f1 = index * 0x1.0p-7;
double f2 = f - f1;
u = f2 / fma(f2, 0.5, f1);
v = u * u;
const double cb_1 = 8.33333333333333593622e-02; /* 0x3fb5555555555557 */
const double cb_2 = 1.24999999978138668903e-02; /* 0x3f89999999865ede */
const double cb_3 = 2.23219810758559851206e-03; /* 0x3f6249423bd94741 */
double poly = v * fma(v, fma(v, cb_3, cb_2), cb_1);
double z2 = q + fma(u, poly, u);
double dxexp = (double)xexp;
#if defined (COMPILING_LOG10)
// Add xexp * log(2) to z1,z2 to get log(x)
r1 = fma(dxexp, log2_lead, z1);
r2 = fma(dxexp, log2_tail, z2);
double ret_far = fma(log10e_lead, r1, fma(log10e_lead, r2, fma(log10e_tail, r1, log10e_tail*r2)));
#elif defined(COMPILING_LOG2)
r1 = fma(log2e_lead, z1, dxexp);
r2 = fma(log2e_lead, z2, fma(log2e_tail, z1, log2e_tail*z2));
double ret_far = r1 + r2;
#else
r1 = fma(dxexp, log2_lead, z1);
r2 = fma(dxexp, log2_tail, z2);
double ret_far = r1 + r2;
#endif
double ret = is_near ? ret_near : ret_far;
ret = isinf(x) ? as_double(PINFBITPATT_DP64) : ret;
ret = isnan(x) | (x < 0.0) ? as_double(QNANBITPATT_DP64) : ret;
ret = x == 0.0 ? as_double(NINFBITPATT_DP64) : ret;
return ret;
}
#endif // cl_khr_fp64
|