File: float_to_chars_test_cases.hpp

package info (click to toggle)
llvm-toolchain-15 1%3A15.0.6-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,554,644 kB
  • sloc: cpp: 5,922,452; ansic: 1,012,136; asm: 674,362; python: 191,568; objc: 73,855; f90: 42,327; lisp: 31,913; pascal: 11,973; javascript: 10,144; sh: 9,421; perl: 7,447; ml: 5,527; awk: 3,523; makefile: 2,520; xml: 885; cs: 573; fortran: 567
file content (541 lines) | stat: -rw-r--r-- 27,155 bytes parent folder | download | duplicates (17)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
// Copyright (c) Microsoft Corporation.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception


// Copyright 2018 Ulf Adams
// Copyright (c) Microsoft Corporation. All rights reserved.

// Boost Software License - Version 1.0 - August 17th, 2003

// Permission is hereby granted, free of charge, to any person or organization
// obtaining a copy of the software and accompanying documentation covered by
// this license (the "Software") to use, reproduce, display, distribute,
// execute, and transmit the Software, and to prepare derivative works of the
// Software, and to permit third-parties to whom the Software is furnished to
// do so, all subject to the following:

// The copyright notices in the Software and this entire statement, including
// the above license grant, this restriction and the following disclaimer,
// must be included in all copies of the Software, in whole or in part, and
// all derivative works of the Software, unless such copies or derivative
// works are solely in the form of machine-executable object code generated by
// a source language processor.

// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.


// This file contains test cases derived from:
// https://github.com/ulfjack/ryu
// See xcharconv_ryu.h for the exact commit.
// (Keep the cgmanifest.json commitHash in sync.)


#ifndef FLOAT_TO_CHARS_TEST_CASES_HPP
#define FLOAT_TO_CHARS_TEST_CASES_HPP

#include <charconv>

#include "test.hpp"
using namespace std;

inline constexpr FloatToCharsTestCase float_to_chars_test_cases[] = {
    // Test special cases (zero, inf, nan) and an ordinary case. Also test negative signs.
    {0.0f, chars_format::scientific, "0e+00"},
    {-0.0f, chars_format::scientific, "-0e+00"},
    {float_inf, chars_format::scientific, "inf"},
    {-float_inf, chars_format::scientific, "-inf"},
    {float_nan, chars_format::scientific, "nan"},
    {-float_nan, chars_format::scientific, "-nan(ind)"},
    {float_nan_payload, chars_format::scientific, "nan"},
    {-float_nan_payload, chars_format::scientific, "-nan"},
    {2.018f, chars_format::scientific, "2.018e+00"},
    {-2.018f, chars_format::scientific, "-2.018e+00"},

    // Ditto for fixed, which doesn't emit exponents.
    {0.0f, chars_format::fixed, "0"},
    {-0.0f, chars_format::fixed, "-0"},
    {float_inf, chars_format::fixed, "inf"},
    {-float_inf, chars_format::fixed, "-inf"},
    {float_nan, chars_format::fixed, "nan"},
    {-float_nan, chars_format::fixed, "-nan(ind)"},
    {float_nan_payload, chars_format::fixed, "nan"},
    {-float_nan_payload, chars_format::fixed, "-nan"},
    {2.018f, chars_format::fixed, "2.018"},
    {-2.018f, chars_format::fixed, "-2.018"},

    // Ditto for general, which selects fixed for the scientific exponent 0.
    {0.0f, chars_format::general, "0"},
    {-0.0f, chars_format::general, "-0"},
    {float_inf, chars_format::general, "inf"},
    {-float_inf, chars_format::general, "-inf"},
    {float_nan, chars_format::general, "nan"},
    {-float_nan, chars_format::general, "-nan(ind)"},
    {float_nan_payload, chars_format::general, "nan"},
    {-float_nan_payload, chars_format::general, "-nan"},
    {2.018f, chars_format::general, "2.018"},
    {-2.018f, chars_format::general, "-2.018"},

    // Ditto for plain, which selects fixed because it's shorter for these values.
    {0.0f, chars_format{}, "0"},
    {-0.0f, chars_format{}, "-0"},
    {float_inf, chars_format{}, "inf"},
    {-float_inf, chars_format{}, "-inf"},
    {float_nan, chars_format{}, "nan"},
    {-float_nan, chars_format{}, "-nan(ind)"},
    {float_nan_payload, chars_format{}, "nan"},
    {-float_nan_payload, chars_format{}, "-nan"},
    {2.018f, chars_format{}, "2.018"},
    {-2.018f, chars_format{}, "-2.018"},

    // Ditto for hex.
    {0.0f, chars_format::hex, "0p+0"},
    {-0.0f, chars_format::hex, "-0p+0"},
    {float_inf, chars_format::hex, "inf"},
    {-float_inf, chars_format::hex, "-inf"},
    {float_nan, chars_format::hex, "nan"},
    {-float_nan, chars_format::hex, "-nan(ind)"},
    {float_nan_payload, chars_format::hex, "nan"},
    {-float_nan_payload, chars_format::hex, "-nan"},
    {0x1.729p+0f, chars_format::hex, "1.729p+0"},
    {-0x1.729p+0f, chars_format::hex, "-1.729p+0"},

    // Ryu f2s_test.cc SwitchToSubnormal
    {1.1754944e-38f, chars_format::scientific, "1.1754944e-38"},

    // Ryu f2s_test.cc MinAndMax
    {0x1.fffffep+127f, chars_format::scientific, "3.4028235e+38"},
    {0x1.000000p-149f, chars_format::scientific, "1e-45"},

    // Ryu f2s_test.cc BoundaryRoundEven
    {3.355445e7f, chars_format::scientific, "3.355445e+07"},
    {8.999999e9f, chars_format::scientific, "9e+09"},
    {3.4366717e10f, chars_format::scientific, "3.436672e+10"},

    // Ryu f2s_test.cc ExactValueRoundEven
    {3.0540412e5f, chars_format::scientific, "3.0540412e+05"},
    {8.0990312e3f, chars_format::scientific, "8.0990312e+03"},

    // Ryu f2s_test.cc LotsOfTrailingZeros
    {2.4414062e-4f, chars_format::scientific, "2.4414062e-04"},
    {2.4414062e-3f, chars_format::scientific, "2.4414062e-03"},
    {4.3945312e-3f, chars_format::scientific, "4.3945312e-03"},
    {6.3476562e-3f, chars_format::scientific, "6.3476562e-03"},

    // Ryu f2s_test.cc Regression
    {4.7223665e21f, chars_format::scientific, "4.7223665e+21"},
    {8388608.0f, chars_format::scientific, "8.388608e+06"},
    {1.6777216e7f, chars_format::scientific, "1.6777216e+07"},
    {3.3554436e7f, chars_format::scientific, "3.3554436e+07"},
    {6.7131496e7f, chars_format::scientific, "6.7131496e+07"},
    {1.9310392e-38f, chars_format::scientific, "1.9310392e-38"},
    {-2.47e-43f, chars_format::scientific, "-2.47e-43"},
    {1.993244e-38f, chars_format::scientific, "1.993244e-38"},
    {4103.9003f, chars_format::scientific, "4.1039004e+03"},
    {5.3399997e9f, chars_format::scientific, "5.3399997e+09"},
    {6.0898e-39f, chars_format::scientific, "6.0898e-39"},
    {0.0010310042f, chars_format::scientific, "1.0310042e-03"},
    {2.8823261e17f, chars_format::scientific, "2.882326e+17"},
    {0x1.5c87fap-84f, chars_format::scientific, "7.038531e-26"}, // TRANSITION, VSO-629490, should be 7.038531e-26f
    {9.2234038e17f, chars_format::scientific, "9.223404e+17"},
    {6.7108872e7f, chars_format::scientific, "6.710887e+07"},
    {1.0e-44f, chars_format::scientific, "1e-44"},
    {2.816025e14f, chars_format::scientific, "2.816025e+14"},
    {9.223372e18f, chars_format::scientific, "9.223372e+18"},
    {1.5846085e29f, chars_format::scientific, "1.5846086e+29"},
    {1.1811161e19f, chars_format::scientific, "1.1811161e+19"},
    {5.368709e18f, chars_format::scientific, "5.368709e+18"},
    {4.6143165e18f, chars_format::scientific, "4.6143166e+18"},
    {0.007812537f, chars_format::scientific, "7.812537e-03"},
    {1.4e-45f, chars_format::scientific, "1e-45"},
    {1.18697724e20f, chars_format::scientific, "1.18697725e+20"},
    {1.00014165e-36f, chars_format::scientific, "1.00014165e-36"},
    {200.0f, chars_format::scientific, "2e+02"},
    {3.3554432e7f, chars_format::scientific, "3.3554432e+07"},

    // Ryu f2s_test.cc LooksLikePow5
    {0x1.2a05f2p+59f, chars_format::scientific, "6.7108864e+17"},
    {0x1.2a05f2p+60f, chars_format::scientific, "1.3421773e+18"},
    {0x1.2a05f2p+61f, chars_format::scientific, "2.6843546e+18"},

    // Ryu f2s_test.cc OutputLength
    {1.0f, chars_format::scientific, "1e+00"},
    {1.2f, chars_format::scientific, "1.2e+00"},
    {1.23f, chars_format::scientific, "1.23e+00"},
    {1.234f, chars_format::scientific, "1.234e+00"},
    {1.2345f, chars_format::scientific, "1.2345e+00"},
    {1.23456f, chars_format::scientific, "1.23456e+00"},
    {1.234567f, chars_format::scientific, "1.234567e+00"},
    {1.2345678f, chars_format::scientific, "1.2345678e+00"},
    {1.23456735e-36f, chars_format::scientific, "1.23456735e-36"},

    // Test all exponents.
    {1.729e-45f, chars_format::scientific, "1e-45"},
    {1.729e-44f, chars_format::scientific, "1.7e-44"},
    {1.729e-43f, chars_format::scientific, "1.72e-43"},
    {1.729e-42f, chars_format::scientific, "1.729e-42"},
    {1.729e-41f, chars_format::scientific, "1.729e-41"},
    {1.729e-40f, chars_format::scientific, "1.729e-40"},
    {1.729e-39f, chars_format::scientific, "1.729e-39"},
    {1.729e-38f, chars_format::scientific, "1.729e-38"},
    {1.729e-37f, chars_format::scientific, "1.729e-37"},
    {1.729e-36f, chars_format::scientific, "1.729e-36"},
    {1.729e-35f, chars_format::scientific, "1.729e-35"},
    {1.729e-34f, chars_format::scientific, "1.729e-34"},
    {1.729e-33f, chars_format::scientific, "1.729e-33"},
    {1.729e-32f, chars_format::scientific, "1.729e-32"},
    {1.729e-31f, chars_format::scientific, "1.729e-31"},
    {1.729e-30f, chars_format::scientific, "1.729e-30"},
    {1.729e-29f, chars_format::scientific, "1.729e-29"},
    {1.729e-28f, chars_format::scientific, "1.729e-28"},
    {1.729e-27f, chars_format::scientific, "1.729e-27"},
    {1.729e-26f, chars_format::scientific, "1.729e-26"},
    {1.729e-25f, chars_format::scientific, "1.729e-25"},
    {1.729e-24f, chars_format::scientific, "1.729e-24"},
    {1.729e-23f, chars_format::scientific, "1.729e-23"},
    {1.729e-22f, chars_format::scientific, "1.729e-22"},
    {1.729e-21f, chars_format::scientific, "1.729e-21"},
    {1.729e-20f, chars_format::scientific, "1.729e-20"},
    {1.729e-19f, chars_format::scientific, "1.729e-19"},
    {1.729e-18f, chars_format::scientific, "1.729e-18"},
    {1.729e-17f, chars_format::scientific, "1.729e-17"},
    {1.729e-16f, chars_format::scientific, "1.729e-16"},
    {1.729e-15f, chars_format::scientific, "1.729e-15"},
    {1.729e-14f, chars_format::scientific, "1.729e-14"},
    {1.729e-13f, chars_format::scientific, "1.729e-13"},
    {1.729e-12f, chars_format::scientific, "1.729e-12"},
    {1.729e-11f, chars_format::scientific, "1.729e-11"},
    {1.729e-10f, chars_format::scientific, "1.729e-10"},
    {1.729e-9f, chars_format::scientific, "1.729e-09"},
    {1.729e-8f, chars_format::scientific, "1.729e-08"},
    {1.729e-7f, chars_format::scientific, "1.729e-07"},
    {1.729e-6f, chars_format::scientific, "1.729e-06"},
    {1.729e-5f, chars_format::scientific, "1.729e-05"},
    {1.729e-4f, chars_format::scientific, "1.729e-04"},
    {1.729e-3f, chars_format::scientific, "1.729e-03"},
    {1.729e-2f, chars_format::scientific, "1.729e-02"},
    {1.729e-1f, chars_format::scientific, "1.729e-01"},
    {1.729e0f, chars_format::scientific, "1.729e+00"},
    {1.729e1f, chars_format::scientific, "1.729e+01"},
    {1.729e2f, chars_format::scientific, "1.729e+02"},
    {1.729e3f, chars_format::scientific, "1.729e+03"},
    {1.729e4f, chars_format::scientific, "1.729e+04"},
    {1.729e5f, chars_format::scientific, "1.729e+05"},
    {1.729e6f, chars_format::scientific, "1.729e+06"},
    {1.729e7f, chars_format::scientific, "1.729e+07"},
    {1.729e8f, chars_format::scientific, "1.729e+08"},
    {1.729e9f, chars_format::scientific, "1.729e+09"},
    {1.729e10f, chars_format::scientific, "1.729e+10"},
    {1.729e11f, chars_format::scientific, "1.729e+11"},
    {1.729e12f, chars_format::scientific, "1.729e+12"},
    {1.729e13f, chars_format::scientific, "1.729e+13"},
    {1.729e14f, chars_format::scientific, "1.729e+14"},
    {1.729e15f, chars_format::scientific, "1.729e+15"},
    {1.729e16f, chars_format::scientific, "1.729e+16"},
    {1.729e17f, chars_format::scientific, "1.729e+17"},
    {1.729e18f, chars_format::scientific, "1.729e+18"},
    {1.729e19f, chars_format::scientific, "1.729e+19"},
    {1.729e20f, chars_format::scientific, "1.729e+20"},
    {1.729e21f, chars_format::scientific, "1.729e+21"},
    {1.729e22f, chars_format::scientific, "1.729e+22"},
    {1.729e23f, chars_format::scientific, "1.729e+23"},
    {1.729e24f, chars_format::scientific, "1.729e+24"},
    {1.729e25f, chars_format::scientific, "1.729e+25"},
    {1.729e26f, chars_format::scientific, "1.729e+26"},
    {1.729e27f, chars_format::scientific, "1.729e+27"},
    {1.729e28f, chars_format::scientific, "1.729e+28"},
    {1.729e29f, chars_format::scientific, "1.729e+29"},
    {1.729e30f, chars_format::scientific, "1.729e+30"},
    {1.729e31f, chars_format::scientific, "1.729e+31"},
    {1.729e32f, chars_format::scientific, "1.729e+32"},
    {1.729e33f, chars_format::scientific, "1.729e+33"},
    {1.729e34f, chars_format::scientific, "1.729e+34"},
    {1.729e35f, chars_format::scientific, "1.729e+35"},
    {1.729e36f, chars_format::scientific, "1.729e+36"},
    {1.729e37f, chars_format::scientific, "1.729e+37"},
    {1.729e38f, chars_format::scientific, "1.729e+38"},

    // Test all of the cases for fixed notation, including the non-Ryu fallback for large integers.
    {1.729e-4f, chars_format::fixed, "0.0001729"},
    {1.729e-3f, chars_format::fixed, "0.001729"},
    {1.729e-2f, chars_format::fixed, "0.01729"},
    {1.729e-1f, chars_format::fixed, "0.1729"},
    {1.729e0f, chars_format::fixed, "1.729"},
    {1.729e1f, chars_format::fixed, "17.29"},
    {1.729e2f, chars_format::fixed, "172.9"},
    {1.729e3f, chars_format::fixed, "1729"},
    {1.729e4f, chars_format::fixed, "17290"},
    {1.729e5f, chars_format::fixed, "172900"},
    {1.729e6f, chars_format::fixed, "1729000"},
    {1.729e7f, chars_format::fixed, "17290000"},
    {1.729e8f, chars_format::fixed, "172900000"},
    {1.729e9f, chars_format::fixed, "1728999936"},
    {1.729e10f, chars_format::fixed, "17290000384"},
    {1.729e11f, chars_format::fixed, "172900007936"},
    {1.729e12f, chars_format::fixed, "1728999981056"},
    {1.729e13f, chars_format::fixed, "17290000072704"},
    {1.729e14f, chars_format::fixed, "172899998629888"},
    {1.729e15f, chars_format::fixed, "1729000019853312"},
    {1.729e16f, chars_format::fixed, "17289999661662208"},
    {1.729e17f, chars_format::fixed, "172900007354040320"},
    {1.729e18f, chars_format::fixed, "1729000039180664832"},
    {1.729e19f, chars_format::fixed, "17289999567172927488"},
    {1.729e20f, chars_format::fixed, "172899997870752530432"},
    {1.729e21f, chars_format::fixed, "1729000013891897393152"},
    {1.729e22f, chars_format::fixed, "17290000138918973931520"},
    {1.729e23f, chars_format::fixed, "172899999137389925629952"},
    {1.729e24f, chars_format::fixed, "1729000063431493294227456"},
    {1.729e25f, chars_format::fixed, "17289999481393428335427584"},
    {1.729e26f, chars_format::fixed, "172900004037306320209051648"},
    {1.729e27f, chars_format::fixed, "1729000040373063202090516480"},
    {1.729e28f, chars_format::fixed, "17290000403730632020905164800"},
    {1.729e29f, chars_format::fixed, "172900004037306320209051648000"},
    {1.729e30f, chars_format::fixed, "1728999964815199476176193060864"},
    {1.729e31f, chars_format::fixed, "17290000252614904569076517961728"},
    {1.729e32f, chars_format::fixed, "172899990436890849544473432555520"},
    {1.729e33f, chars_format::fixed, "1729000059111413406117268687945728"},
    {1.729e34f, chars_format::fixed, "17290000281629124239827618154676224"},
    {1.729e35f, chars_format::fixed, "172899995388651006685994532152016896"},
    {1.729e36f, chars_format::fixed, "1728999993500591323992114118292144128"},
    {1.729e37f, chars_format::fixed, "17289999935005913239921141182921441280"},
    {1.729e38f, chars_format::fixed, "172899996814757931942752608835808002048"},

    // Also test one-digit cases, where the decimal point can't appear between digits like "17.29".
    {7e-3f, chars_format::fixed, "0.007"},
    {7e-2f, chars_format::fixed, "0.07"},
    {7e-1f, chars_format::fixed, "0.7"},
    {7e0f, chars_format::fixed, "7"},
    {7e1f, chars_format::fixed, "70"},
    {7e2f, chars_format::fixed, "700"},
    {7e3f, chars_format::fixed, "7000"},

    // Test the maximum value in fixed notation.
    {0x1.fffffep+127f, chars_format::fixed, "340282346638528859811704183484516925440"},

    // Test highly-trimmed powers of 2.
    {0x1p118f, chars_format::fixed, "332306998946228968225951765070086144"},
    {0x1p118f, chars_format::scientific, "3.32307e+35"},
    {0x1p119f, chars_format::fixed, "664613997892457936451903530140172288"},
    {0x1p119f, chars_format::scientific, "6.64614e+35"},

    // Test powers of 10 that are exactly representable.
    {1e0f, chars_format::fixed, "1"},
    {1e1f, chars_format::fixed, "10"},
    {1e2f, chars_format::fixed, "100"},
    {1e3f, chars_format::fixed, "1000"},
    {1e4f, chars_format::fixed, "10000"},
    {1e5f, chars_format::fixed, "100000"},
    {1e6f, chars_format::fixed, "1000000"},
    {1e7f, chars_format::fixed, "10000000"},
    {1e8f, chars_format::fixed, "100000000"},
    {1e9f, chars_format::fixed, "1000000000"},
    {1e10f, chars_format::fixed, "10000000000"},

    // Test powers of 10 that aren't exactly representable.
    // This exercises the "adjustment" code.
    {1e11f, chars_format::fixed, "99999997952"},
    {1e12f, chars_format::fixed, "999999995904"},
    {1e13f, chars_format::fixed, "9999999827968"},
    {1e14f, chars_format::fixed, "100000000376832"},
    {1e15f, chars_format::fixed, "999999986991104"},
    {1e16f, chars_format::fixed, "10000000272564224"},
    {1e17f, chars_format::fixed, "99999998430674944"},
    {1e18f, chars_format::fixed, "999999984306749440"},
    {1e19f, chars_format::fixed, "9999999980506447872"},
    {1e20f, chars_format::fixed, "100000002004087734272"},
    {1e21f, chars_format::fixed, "1000000020040877342720"},
    {1e22f, chars_format::fixed, "9999999778196308361216"},
    {1e23f, chars_format::fixed, "99999997781963083612160"},
    {1e24f, chars_format::fixed, "1000000013848427855085568"},
    {1e25f, chars_format::fixed, "9999999562023526247432192"},
    {1e26f, chars_format::fixed, "100000002537764290115403776"},
    {1e27f, chars_format::fixed, "999999988484154753734934528"},
    {1e28f, chars_format::fixed, "9999999442119689768320106496"},
    {1e29f, chars_format::fixed, "100000001504746621987668885504"},
    {1e30f, chars_format::fixed, "1000000015047466219876688855040"},
    {1e31f, chars_format::fixed, "9999999848243207295109594873856"},
    {1e32f, chars_format::fixed, "100000003318135351409612647563264"},
    {1e33f, chars_format::fixed, "999999994495727286427992885035008"},
    {1e34f, chars_format::fixed, "9999999790214767953607394487959552"},
    {1e35f, chars_format::fixed, "100000004091847875962975319375216640"},
    {1e36f, chars_format::fixed, "999999961690316245365415600208216064"},
    {1e37f, chars_format::fixed, "9999999933815812510711506376257961984"},
    {1e38f, chars_format::fixed, "99999996802856924650656260769173209088"},

    // These numbers have odd mantissas (unaffected by shifting)
    // that are barely within the "max shifted mantissa" limit.
    // They're exactly-representable multiples of powers of 10, and can use Ryu with zero-filling.
    {3355443e1f, chars_format::fixed, "33554430"},
    {671087e2f, chars_format::fixed, "67108700"},
    {134217e3f, chars_format::fixed, "134217000"},
    {26843e4f, chars_format::fixed, "268430000"},
    {5367e5f, chars_format::fixed, "536700000"},
    {1073e6f, chars_format::fixed, "1073000000"},
    {213e7f, chars_format::fixed, "2130000000"},
    {41e8f, chars_format::fixed, "4100000000"},
    {7e9f, chars_format::fixed, "7000000000"},
    {1e10f, chars_format::fixed, "10000000000"},

    // These numbers have odd mantissas (unaffected by shifting)
    // that are barely above the "max shifted mantissa" limit.
    // This activates the non-Ryu fallback for large integers.
    {3355445e1f, chars_format::fixed, "33554448"},
    {671089e2f, chars_format::fixed, "67108896"},
    {134219e3f, chars_format::fixed, "134219008"},
    {26845e4f, chars_format::fixed, "268449984"},
    {5369e5f, chars_format::fixed, "536899968"},
    {1075e6f, chars_format::fixed, "1075000064"},
    {215e7f, chars_format::fixed, "2150000128"},
    {43e8f, chars_format::fixed, "4300000256"},
    {9e9f, chars_format::fixed, "8999999488"},
    {3e10f, chars_format::fixed, "30000001024"},

    // Test the mantissa shifting logic.
    {5495808e5f, chars_format::fixed, "549580800000"}, // 5367 * 2^10
    {5497856e5f, chars_format::fixed, "549785567232"}, // 5369 * 2^10

    // Inspect all of those numbers in scientific notation.
    // For the within-limit numbers, this verifies that Ryu is actually being used with zero-filling above.
    // For the above-limit numbers, this tests Ryu's trimming.
    {3355443e1f, chars_format::scientific, "3.355443e+07"},
    {671087e2f, chars_format::scientific, "6.71087e+07"},
    {134217e3f, chars_format::scientific, "1.34217e+08"},
    {26843e4f, chars_format::scientific, "2.6843e+08"},
    {5367e5f, chars_format::scientific, "5.367e+08"},
    {1073e6f, chars_format::scientific, "1.073e+09"},
    {213e7f, chars_format::scientific, "2.13e+09"},
    {41e8f, chars_format::scientific, "4.1e+09"},
    {7e9f, chars_format::scientific, "7e+09"},
    {1e10f, chars_format::scientific, "1e+10"},
    {3355445e1f, chars_format::scientific, "3.355445e+07"},
    {671089e2f, chars_format::scientific, "6.71089e+07"},
    {134219e3f, chars_format::scientific, "1.34219e+08"},
    {26845e4f, chars_format::scientific, "2.6845e+08"},
    {5369e5f, chars_format::scientific, "5.369e+08"},
    {1075e6f, chars_format::scientific, "1.075e+09"},
    {215e7f, chars_format::scientific, "2.15e+09"},
    {43e8f, chars_format::scientific, "4.3e+09"},
    {9e9f, chars_format::scientific, "9e+09"},
    {3e10f, chars_format::scientific, "3e+10"},
    {5495808e5f, chars_format::scientific, "5.495808e+11"},
    {5497856e5f, chars_format::scientific, "5.497856e+11"},

    // Test the switching logic of chars_format::general.
    // C11 7.21.6.1 "The fprintf function"/8:
    // "Let P equal [...] 6 if the precision is omitted [...].
    // Then, if a conversion with style E would have an exponent of X:
    // - if P > X >= -4, the conversion is with style f [...].
    // - otherwise, the conversion is with style e [...]."
    {1e-6f, chars_format::general, "1e-06"},
    {1e-5f, chars_format::general, "1e-05"},
    {1e-4f, chars_format::general, "0.0001"},
    {1e-3f, chars_format::general, "0.001"},
    {1e-2f, chars_format::general, "0.01"},
    {1e-1f, chars_format::general, "0.1"},
    {1e0f, chars_format::general, "1"},
    {1e1f, chars_format::general, "10"},
    {1e2f, chars_format::general, "100"},
    {1e3f, chars_format::general, "1000"},
    {1e4f, chars_format::general, "10000"},
    {1e5f, chars_format::general, "100000"},
    {1e6f, chars_format::general, "1e+06"},
    {1e7f, chars_format::general, "1e+07"},
    {1.234e-6f, chars_format::general, "1.234e-06"},
    {1.234e-5f, chars_format::general, "1.234e-05"},
    {1.234e-4f, chars_format::general, "0.0001234"},
    {1.234e-3f, chars_format::general, "0.001234"},
    {1.234e-2f, chars_format::general, "0.01234"},
    {1.234e-1f, chars_format::general, "0.1234"},
    {1.234e0f, chars_format::general, "1.234"},
    {1.234e1f, chars_format::general, "12.34"},
    {1.234e2f, chars_format::general, "123.4"},
    {1.234e3f, chars_format::general, "1234"},
    {1.234e4f, chars_format::general, "12340"},
    {1.234e5f, chars_format::general, "123400"},
    {1.234e6f, chars_format::general, "1.234e+06"},
    {1.234e7f, chars_format::general, "1.234e+07"},
    {1.234e8f, chars_format::general, "1.234e+08"},
    {1.234e9f, chars_format::general, "1.234e+09"},
    {1.234e10f, chars_format::general, "1.234e+10"},

    // Test the switching logic of the plain overload.
    // N4762 19.19.2 [charconv.to.chars]/8:
    // "The conversion specifier is f or e, chosen according to the requirement
    // for a shortest representation (see above); a tie is resolved in favor of f."
    {1e-6f, chars_format{}, "1e-06"},
    {1e-5f, chars_format{}, "1e-05"},
    {1e-4f, chars_format{}, "1e-04"},
    {1e-3f, chars_format{}, "0.001"},
    {1e-2f, chars_format{}, "0.01"},
    {1e-1f, chars_format{}, "0.1"},
    {1e0f, chars_format{}, "1"},
    {1e1f, chars_format{}, "10"},
    {1e2f, chars_format{}, "100"},
    {1e3f, chars_format{}, "1000"},
    {1e4f, chars_format{}, "10000"},
    {1e5f, chars_format{}, "1e+05"},
    {1e6f, chars_format{}, "1e+06"},
    {1e7f, chars_format{}, "1e+07"},
    {1.234e-6f, chars_format{}, "1.234e-06"},
    {1.234e-5f, chars_format{}, "1.234e-05"},
    {1.234e-4f, chars_format{}, "0.0001234"},
    {1.234e-3f, chars_format{}, "0.001234"},
    {1.234e-2f, chars_format{}, "0.01234"},
    {1.234e-1f, chars_format{}, "0.1234"},
    {1.234e0f, chars_format{}, "1.234"},
    {1.234e1f, chars_format{}, "12.34"},
    {1.234e2f, chars_format{}, "123.4"},
    {1.234e3f, chars_format{}, "1234"},
    {1.234e4f, chars_format{}, "12340"},
    {1.234e5f, chars_format{}, "123400"},
    {1.234e6f, chars_format{}, "1234000"},
    {1.234e7f, chars_format{}, "12340000"},
    {1.234e8f, chars_format{}, "123400000"},
    {1.234e9f, chars_format{}, "1.234e+09"},
    {1.234e10f, chars_format{}, "1.234e+10"},

    // Test hexfloat corner cases.
    {0x1.728p+0f, chars_format::hex, "1.728p+0"}, // instead of "2.e5p-1"
    {0x0.000002p-126f, chars_format::hex, "0.000002p-126"}, // instead of "1p-149", min subnormal
    {0x0.fffffep-126f, chars_format::hex, "0.fffffep-126"}, // max subnormal
    {0x1p-126f, chars_format::hex, "1p-126"}, // min normal
    {0x1.fffffep+127f, chars_format::hex, "1.fffffep+127"}, // max normal

    // Test hexfloat exponents.
    {0x1p-109f, chars_format::hex, "1p-109"},
    {0x1p-99f, chars_format::hex, "1p-99"},
    {0x1p-9f, chars_format::hex, "1p-9"},
    {0x1p+0f, chars_format::hex, "1p+0"},
    {0x1p+9f, chars_format::hex, "1p+9"},
    {0x1p+99f, chars_format::hex, "1p+99"},
    {0x1p+109f, chars_format::hex, "1p+109"},

    // Test hexfloat hexits.
    {0x1.0123p+0f, chars_format::hex, "1.0123p+0"},
    {0x1.4567p+0f, chars_format::hex, "1.4567p+0"},
    {0x1.89abp+0f, chars_format::hex, "1.89abp+0"},
    {0x1.cdefp+0f, chars_format::hex, "1.cdefp+0"},

    // Test hexfloat trimming.
    {0x1.00000ap+0f, chars_format::hex, "1.00000ap+0"},
    {0x1.0000ap+0f, chars_format::hex, "1.0000ap+0"},
    {0x1.000ap+0f, chars_format::hex, "1.000ap+0"},
    {0x1.00ap+0f, chars_format::hex, "1.00ap+0"},
    {0x1.0ap+0f, chars_format::hex, "1.0ap+0"},
    {0x1.ap+0f, chars_format::hex, "1.ap+0"},
    {0x1p+0f, chars_format::hex, "1p+0"},

    // https://www.exploringbinary.com/the-shortest-decimal-string-that-round-trips-may-not-be-the-nearest/
    // This is an exhaustive list of anomalous values.
    // (See double_to_chars_test_cases.hpp for more details.)
    {0x1p90f, chars_format::scientific, "1.2379401e+27"},
    {0x1p87f, chars_format::scientific, "1.5474251e+26"},
    {0x1p-96f, chars_format::scientific, "1.2621775e-29"},
};

#endif // FLOAT_TO_CHARS_TEST_CASES_HPP