1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
|
// Copyright (c) Microsoft Corporation.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Copyright 2018 Ulf Adams
// Copyright (c) Microsoft Corporation. All rights reserved.
// Boost Software License - Version 1.0 - August 17th, 2003
// Permission is hereby granted, free of charge, to any person or organization
// obtaining a copy of the software and accompanying documentation covered by
// this license (the "Software") to use, reproduce, display, distribute,
// execute, and transmit the Software, and to prepare derivative works of the
// Software, and to permit third-parties to whom the Software is furnished to
// do so, all subject to the following:
// The copyright notices in the Software and this entire statement, including
// the above license grant, this restriction and the following disclaimer,
// must be included in all copies of the Software, in whole or in part, and
// all derivative works of the Software, unless such copies or derivative
// works are solely in the form of machine-executable object code generated by
// a source language processor.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
// This file contains test cases derived from:
// https://github.com/ulfjack/ryu
// See xcharconv_ryu.h for the exact commit.
// (Keep the cgmanifest.json commitHash in sync.)
#ifndef FLOAT_TO_CHARS_TEST_CASES_HPP
#define FLOAT_TO_CHARS_TEST_CASES_HPP
#include <charconv>
#include "test.hpp"
using namespace std;
inline constexpr FloatToCharsTestCase float_to_chars_test_cases[] = {
// Test special cases (zero, inf, nan) and an ordinary case. Also test negative signs.
{0.0f, chars_format::scientific, "0e+00"},
{-0.0f, chars_format::scientific, "-0e+00"},
{float_inf, chars_format::scientific, "inf"},
{-float_inf, chars_format::scientific, "-inf"},
{float_nan, chars_format::scientific, "nan"},
{-float_nan, chars_format::scientific, "-nan(ind)"},
{float_nan_payload, chars_format::scientific, "nan"},
{-float_nan_payload, chars_format::scientific, "-nan"},
{2.018f, chars_format::scientific, "2.018e+00"},
{-2.018f, chars_format::scientific, "-2.018e+00"},
// Ditto for fixed, which doesn't emit exponents.
{0.0f, chars_format::fixed, "0"},
{-0.0f, chars_format::fixed, "-0"},
{float_inf, chars_format::fixed, "inf"},
{-float_inf, chars_format::fixed, "-inf"},
{float_nan, chars_format::fixed, "nan"},
{-float_nan, chars_format::fixed, "-nan(ind)"},
{float_nan_payload, chars_format::fixed, "nan"},
{-float_nan_payload, chars_format::fixed, "-nan"},
{2.018f, chars_format::fixed, "2.018"},
{-2.018f, chars_format::fixed, "-2.018"},
// Ditto for general, which selects fixed for the scientific exponent 0.
{0.0f, chars_format::general, "0"},
{-0.0f, chars_format::general, "-0"},
{float_inf, chars_format::general, "inf"},
{-float_inf, chars_format::general, "-inf"},
{float_nan, chars_format::general, "nan"},
{-float_nan, chars_format::general, "-nan(ind)"},
{float_nan_payload, chars_format::general, "nan"},
{-float_nan_payload, chars_format::general, "-nan"},
{2.018f, chars_format::general, "2.018"},
{-2.018f, chars_format::general, "-2.018"},
// Ditto for plain, which selects fixed because it's shorter for these values.
{0.0f, chars_format{}, "0"},
{-0.0f, chars_format{}, "-0"},
{float_inf, chars_format{}, "inf"},
{-float_inf, chars_format{}, "-inf"},
{float_nan, chars_format{}, "nan"},
{-float_nan, chars_format{}, "-nan(ind)"},
{float_nan_payload, chars_format{}, "nan"},
{-float_nan_payload, chars_format{}, "-nan"},
{2.018f, chars_format{}, "2.018"},
{-2.018f, chars_format{}, "-2.018"},
// Ditto for hex.
{0.0f, chars_format::hex, "0p+0"},
{-0.0f, chars_format::hex, "-0p+0"},
{float_inf, chars_format::hex, "inf"},
{-float_inf, chars_format::hex, "-inf"},
{float_nan, chars_format::hex, "nan"},
{-float_nan, chars_format::hex, "-nan(ind)"},
{float_nan_payload, chars_format::hex, "nan"},
{-float_nan_payload, chars_format::hex, "-nan"},
{0x1.729p+0f, chars_format::hex, "1.729p+0"},
{-0x1.729p+0f, chars_format::hex, "-1.729p+0"},
// Ryu f2s_test.cc SwitchToSubnormal
{1.1754944e-38f, chars_format::scientific, "1.1754944e-38"},
// Ryu f2s_test.cc MinAndMax
{0x1.fffffep+127f, chars_format::scientific, "3.4028235e+38"},
{0x1.000000p-149f, chars_format::scientific, "1e-45"},
// Ryu f2s_test.cc BoundaryRoundEven
{3.355445e7f, chars_format::scientific, "3.355445e+07"},
{8.999999e9f, chars_format::scientific, "9e+09"},
{3.4366717e10f, chars_format::scientific, "3.436672e+10"},
// Ryu f2s_test.cc ExactValueRoundEven
{3.0540412e5f, chars_format::scientific, "3.0540412e+05"},
{8.0990312e3f, chars_format::scientific, "8.0990312e+03"},
// Ryu f2s_test.cc LotsOfTrailingZeros
{2.4414062e-4f, chars_format::scientific, "2.4414062e-04"},
{2.4414062e-3f, chars_format::scientific, "2.4414062e-03"},
{4.3945312e-3f, chars_format::scientific, "4.3945312e-03"},
{6.3476562e-3f, chars_format::scientific, "6.3476562e-03"},
// Ryu f2s_test.cc Regression
{4.7223665e21f, chars_format::scientific, "4.7223665e+21"},
{8388608.0f, chars_format::scientific, "8.388608e+06"},
{1.6777216e7f, chars_format::scientific, "1.6777216e+07"},
{3.3554436e7f, chars_format::scientific, "3.3554436e+07"},
{6.7131496e7f, chars_format::scientific, "6.7131496e+07"},
{1.9310392e-38f, chars_format::scientific, "1.9310392e-38"},
{-2.47e-43f, chars_format::scientific, "-2.47e-43"},
{1.993244e-38f, chars_format::scientific, "1.993244e-38"},
{4103.9003f, chars_format::scientific, "4.1039004e+03"},
{5.3399997e9f, chars_format::scientific, "5.3399997e+09"},
{6.0898e-39f, chars_format::scientific, "6.0898e-39"},
{0.0010310042f, chars_format::scientific, "1.0310042e-03"},
{2.8823261e17f, chars_format::scientific, "2.882326e+17"},
{0x1.5c87fap-84f, chars_format::scientific, "7.038531e-26"}, // TRANSITION, VSO-629490, should be 7.038531e-26f
{9.2234038e17f, chars_format::scientific, "9.223404e+17"},
{6.7108872e7f, chars_format::scientific, "6.710887e+07"},
{1.0e-44f, chars_format::scientific, "1e-44"},
{2.816025e14f, chars_format::scientific, "2.816025e+14"},
{9.223372e18f, chars_format::scientific, "9.223372e+18"},
{1.5846085e29f, chars_format::scientific, "1.5846086e+29"},
{1.1811161e19f, chars_format::scientific, "1.1811161e+19"},
{5.368709e18f, chars_format::scientific, "5.368709e+18"},
{4.6143165e18f, chars_format::scientific, "4.6143166e+18"},
{0.007812537f, chars_format::scientific, "7.812537e-03"},
{1.4e-45f, chars_format::scientific, "1e-45"},
{1.18697724e20f, chars_format::scientific, "1.18697725e+20"},
{1.00014165e-36f, chars_format::scientific, "1.00014165e-36"},
{200.0f, chars_format::scientific, "2e+02"},
{3.3554432e7f, chars_format::scientific, "3.3554432e+07"},
// Ryu f2s_test.cc LooksLikePow5
{0x1.2a05f2p+59f, chars_format::scientific, "6.7108864e+17"},
{0x1.2a05f2p+60f, chars_format::scientific, "1.3421773e+18"},
{0x1.2a05f2p+61f, chars_format::scientific, "2.6843546e+18"},
// Ryu f2s_test.cc OutputLength
{1.0f, chars_format::scientific, "1e+00"},
{1.2f, chars_format::scientific, "1.2e+00"},
{1.23f, chars_format::scientific, "1.23e+00"},
{1.234f, chars_format::scientific, "1.234e+00"},
{1.2345f, chars_format::scientific, "1.2345e+00"},
{1.23456f, chars_format::scientific, "1.23456e+00"},
{1.234567f, chars_format::scientific, "1.234567e+00"},
{1.2345678f, chars_format::scientific, "1.2345678e+00"},
{1.23456735e-36f, chars_format::scientific, "1.23456735e-36"},
// Test all exponents.
{1.729e-45f, chars_format::scientific, "1e-45"},
{1.729e-44f, chars_format::scientific, "1.7e-44"},
{1.729e-43f, chars_format::scientific, "1.72e-43"},
{1.729e-42f, chars_format::scientific, "1.729e-42"},
{1.729e-41f, chars_format::scientific, "1.729e-41"},
{1.729e-40f, chars_format::scientific, "1.729e-40"},
{1.729e-39f, chars_format::scientific, "1.729e-39"},
{1.729e-38f, chars_format::scientific, "1.729e-38"},
{1.729e-37f, chars_format::scientific, "1.729e-37"},
{1.729e-36f, chars_format::scientific, "1.729e-36"},
{1.729e-35f, chars_format::scientific, "1.729e-35"},
{1.729e-34f, chars_format::scientific, "1.729e-34"},
{1.729e-33f, chars_format::scientific, "1.729e-33"},
{1.729e-32f, chars_format::scientific, "1.729e-32"},
{1.729e-31f, chars_format::scientific, "1.729e-31"},
{1.729e-30f, chars_format::scientific, "1.729e-30"},
{1.729e-29f, chars_format::scientific, "1.729e-29"},
{1.729e-28f, chars_format::scientific, "1.729e-28"},
{1.729e-27f, chars_format::scientific, "1.729e-27"},
{1.729e-26f, chars_format::scientific, "1.729e-26"},
{1.729e-25f, chars_format::scientific, "1.729e-25"},
{1.729e-24f, chars_format::scientific, "1.729e-24"},
{1.729e-23f, chars_format::scientific, "1.729e-23"},
{1.729e-22f, chars_format::scientific, "1.729e-22"},
{1.729e-21f, chars_format::scientific, "1.729e-21"},
{1.729e-20f, chars_format::scientific, "1.729e-20"},
{1.729e-19f, chars_format::scientific, "1.729e-19"},
{1.729e-18f, chars_format::scientific, "1.729e-18"},
{1.729e-17f, chars_format::scientific, "1.729e-17"},
{1.729e-16f, chars_format::scientific, "1.729e-16"},
{1.729e-15f, chars_format::scientific, "1.729e-15"},
{1.729e-14f, chars_format::scientific, "1.729e-14"},
{1.729e-13f, chars_format::scientific, "1.729e-13"},
{1.729e-12f, chars_format::scientific, "1.729e-12"},
{1.729e-11f, chars_format::scientific, "1.729e-11"},
{1.729e-10f, chars_format::scientific, "1.729e-10"},
{1.729e-9f, chars_format::scientific, "1.729e-09"},
{1.729e-8f, chars_format::scientific, "1.729e-08"},
{1.729e-7f, chars_format::scientific, "1.729e-07"},
{1.729e-6f, chars_format::scientific, "1.729e-06"},
{1.729e-5f, chars_format::scientific, "1.729e-05"},
{1.729e-4f, chars_format::scientific, "1.729e-04"},
{1.729e-3f, chars_format::scientific, "1.729e-03"},
{1.729e-2f, chars_format::scientific, "1.729e-02"},
{1.729e-1f, chars_format::scientific, "1.729e-01"},
{1.729e0f, chars_format::scientific, "1.729e+00"},
{1.729e1f, chars_format::scientific, "1.729e+01"},
{1.729e2f, chars_format::scientific, "1.729e+02"},
{1.729e3f, chars_format::scientific, "1.729e+03"},
{1.729e4f, chars_format::scientific, "1.729e+04"},
{1.729e5f, chars_format::scientific, "1.729e+05"},
{1.729e6f, chars_format::scientific, "1.729e+06"},
{1.729e7f, chars_format::scientific, "1.729e+07"},
{1.729e8f, chars_format::scientific, "1.729e+08"},
{1.729e9f, chars_format::scientific, "1.729e+09"},
{1.729e10f, chars_format::scientific, "1.729e+10"},
{1.729e11f, chars_format::scientific, "1.729e+11"},
{1.729e12f, chars_format::scientific, "1.729e+12"},
{1.729e13f, chars_format::scientific, "1.729e+13"},
{1.729e14f, chars_format::scientific, "1.729e+14"},
{1.729e15f, chars_format::scientific, "1.729e+15"},
{1.729e16f, chars_format::scientific, "1.729e+16"},
{1.729e17f, chars_format::scientific, "1.729e+17"},
{1.729e18f, chars_format::scientific, "1.729e+18"},
{1.729e19f, chars_format::scientific, "1.729e+19"},
{1.729e20f, chars_format::scientific, "1.729e+20"},
{1.729e21f, chars_format::scientific, "1.729e+21"},
{1.729e22f, chars_format::scientific, "1.729e+22"},
{1.729e23f, chars_format::scientific, "1.729e+23"},
{1.729e24f, chars_format::scientific, "1.729e+24"},
{1.729e25f, chars_format::scientific, "1.729e+25"},
{1.729e26f, chars_format::scientific, "1.729e+26"},
{1.729e27f, chars_format::scientific, "1.729e+27"},
{1.729e28f, chars_format::scientific, "1.729e+28"},
{1.729e29f, chars_format::scientific, "1.729e+29"},
{1.729e30f, chars_format::scientific, "1.729e+30"},
{1.729e31f, chars_format::scientific, "1.729e+31"},
{1.729e32f, chars_format::scientific, "1.729e+32"},
{1.729e33f, chars_format::scientific, "1.729e+33"},
{1.729e34f, chars_format::scientific, "1.729e+34"},
{1.729e35f, chars_format::scientific, "1.729e+35"},
{1.729e36f, chars_format::scientific, "1.729e+36"},
{1.729e37f, chars_format::scientific, "1.729e+37"},
{1.729e38f, chars_format::scientific, "1.729e+38"},
// Test all of the cases for fixed notation, including the non-Ryu fallback for large integers.
{1.729e-4f, chars_format::fixed, "0.0001729"},
{1.729e-3f, chars_format::fixed, "0.001729"},
{1.729e-2f, chars_format::fixed, "0.01729"},
{1.729e-1f, chars_format::fixed, "0.1729"},
{1.729e0f, chars_format::fixed, "1.729"},
{1.729e1f, chars_format::fixed, "17.29"},
{1.729e2f, chars_format::fixed, "172.9"},
{1.729e3f, chars_format::fixed, "1729"},
{1.729e4f, chars_format::fixed, "17290"},
{1.729e5f, chars_format::fixed, "172900"},
{1.729e6f, chars_format::fixed, "1729000"},
{1.729e7f, chars_format::fixed, "17290000"},
{1.729e8f, chars_format::fixed, "172900000"},
{1.729e9f, chars_format::fixed, "1728999936"},
{1.729e10f, chars_format::fixed, "17290000384"},
{1.729e11f, chars_format::fixed, "172900007936"},
{1.729e12f, chars_format::fixed, "1728999981056"},
{1.729e13f, chars_format::fixed, "17290000072704"},
{1.729e14f, chars_format::fixed, "172899998629888"},
{1.729e15f, chars_format::fixed, "1729000019853312"},
{1.729e16f, chars_format::fixed, "17289999661662208"},
{1.729e17f, chars_format::fixed, "172900007354040320"},
{1.729e18f, chars_format::fixed, "1729000039180664832"},
{1.729e19f, chars_format::fixed, "17289999567172927488"},
{1.729e20f, chars_format::fixed, "172899997870752530432"},
{1.729e21f, chars_format::fixed, "1729000013891897393152"},
{1.729e22f, chars_format::fixed, "17290000138918973931520"},
{1.729e23f, chars_format::fixed, "172899999137389925629952"},
{1.729e24f, chars_format::fixed, "1729000063431493294227456"},
{1.729e25f, chars_format::fixed, "17289999481393428335427584"},
{1.729e26f, chars_format::fixed, "172900004037306320209051648"},
{1.729e27f, chars_format::fixed, "1729000040373063202090516480"},
{1.729e28f, chars_format::fixed, "17290000403730632020905164800"},
{1.729e29f, chars_format::fixed, "172900004037306320209051648000"},
{1.729e30f, chars_format::fixed, "1728999964815199476176193060864"},
{1.729e31f, chars_format::fixed, "17290000252614904569076517961728"},
{1.729e32f, chars_format::fixed, "172899990436890849544473432555520"},
{1.729e33f, chars_format::fixed, "1729000059111413406117268687945728"},
{1.729e34f, chars_format::fixed, "17290000281629124239827618154676224"},
{1.729e35f, chars_format::fixed, "172899995388651006685994532152016896"},
{1.729e36f, chars_format::fixed, "1728999993500591323992114118292144128"},
{1.729e37f, chars_format::fixed, "17289999935005913239921141182921441280"},
{1.729e38f, chars_format::fixed, "172899996814757931942752608835808002048"},
// Also test one-digit cases, where the decimal point can't appear between digits like "17.29".
{7e-3f, chars_format::fixed, "0.007"},
{7e-2f, chars_format::fixed, "0.07"},
{7e-1f, chars_format::fixed, "0.7"},
{7e0f, chars_format::fixed, "7"},
{7e1f, chars_format::fixed, "70"},
{7e2f, chars_format::fixed, "700"},
{7e3f, chars_format::fixed, "7000"},
// Test the maximum value in fixed notation.
{0x1.fffffep+127f, chars_format::fixed, "340282346638528859811704183484516925440"},
// Test highly-trimmed powers of 2.
{0x1p118f, chars_format::fixed, "332306998946228968225951765070086144"},
{0x1p118f, chars_format::scientific, "3.32307e+35"},
{0x1p119f, chars_format::fixed, "664613997892457936451903530140172288"},
{0x1p119f, chars_format::scientific, "6.64614e+35"},
// Test powers of 10 that are exactly representable.
{1e0f, chars_format::fixed, "1"},
{1e1f, chars_format::fixed, "10"},
{1e2f, chars_format::fixed, "100"},
{1e3f, chars_format::fixed, "1000"},
{1e4f, chars_format::fixed, "10000"},
{1e5f, chars_format::fixed, "100000"},
{1e6f, chars_format::fixed, "1000000"},
{1e7f, chars_format::fixed, "10000000"},
{1e8f, chars_format::fixed, "100000000"},
{1e9f, chars_format::fixed, "1000000000"},
{1e10f, chars_format::fixed, "10000000000"},
// Test powers of 10 that aren't exactly representable.
// This exercises the "adjustment" code.
{1e11f, chars_format::fixed, "99999997952"},
{1e12f, chars_format::fixed, "999999995904"},
{1e13f, chars_format::fixed, "9999999827968"},
{1e14f, chars_format::fixed, "100000000376832"},
{1e15f, chars_format::fixed, "999999986991104"},
{1e16f, chars_format::fixed, "10000000272564224"},
{1e17f, chars_format::fixed, "99999998430674944"},
{1e18f, chars_format::fixed, "999999984306749440"},
{1e19f, chars_format::fixed, "9999999980506447872"},
{1e20f, chars_format::fixed, "100000002004087734272"},
{1e21f, chars_format::fixed, "1000000020040877342720"},
{1e22f, chars_format::fixed, "9999999778196308361216"},
{1e23f, chars_format::fixed, "99999997781963083612160"},
{1e24f, chars_format::fixed, "1000000013848427855085568"},
{1e25f, chars_format::fixed, "9999999562023526247432192"},
{1e26f, chars_format::fixed, "100000002537764290115403776"},
{1e27f, chars_format::fixed, "999999988484154753734934528"},
{1e28f, chars_format::fixed, "9999999442119689768320106496"},
{1e29f, chars_format::fixed, "100000001504746621987668885504"},
{1e30f, chars_format::fixed, "1000000015047466219876688855040"},
{1e31f, chars_format::fixed, "9999999848243207295109594873856"},
{1e32f, chars_format::fixed, "100000003318135351409612647563264"},
{1e33f, chars_format::fixed, "999999994495727286427992885035008"},
{1e34f, chars_format::fixed, "9999999790214767953607394487959552"},
{1e35f, chars_format::fixed, "100000004091847875962975319375216640"},
{1e36f, chars_format::fixed, "999999961690316245365415600208216064"},
{1e37f, chars_format::fixed, "9999999933815812510711506376257961984"},
{1e38f, chars_format::fixed, "99999996802856924650656260769173209088"},
// These numbers have odd mantissas (unaffected by shifting)
// that are barely within the "max shifted mantissa" limit.
// They're exactly-representable multiples of powers of 10, and can use Ryu with zero-filling.
{3355443e1f, chars_format::fixed, "33554430"},
{671087e2f, chars_format::fixed, "67108700"},
{134217e3f, chars_format::fixed, "134217000"},
{26843e4f, chars_format::fixed, "268430000"},
{5367e5f, chars_format::fixed, "536700000"},
{1073e6f, chars_format::fixed, "1073000000"},
{213e7f, chars_format::fixed, "2130000000"},
{41e8f, chars_format::fixed, "4100000000"},
{7e9f, chars_format::fixed, "7000000000"},
{1e10f, chars_format::fixed, "10000000000"},
// These numbers have odd mantissas (unaffected by shifting)
// that are barely above the "max shifted mantissa" limit.
// This activates the non-Ryu fallback for large integers.
{3355445e1f, chars_format::fixed, "33554448"},
{671089e2f, chars_format::fixed, "67108896"},
{134219e3f, chars_format::fixed, "134219008"},
{26845e4f, chars_format::fixed, "268449984"},
{5369e5f, chars_format::fixed, "536899968"},
{1075e6f, chars_format::fixed, "1075000064"},
{215e7f, chars_format::fixed, "2150000128"},
{43e8f, chars_format::fixed, "4300000256"},
{9e9f, chars_format::fixed, "8999999488"},
{3e10f, chars_format::fixed, "30000001024"},
// Test the mantissa shifting logic.
{5495808e5f, chars_format::fixed, "549580800000"}, // 5367 * 2^10
{5497856e5f, chars_format::fixed, "549785567232"}, // 5369 * 2^10
// Inspect all of those numbers in scientific notation.
// For the within-limit numbers, this verifies that Ryu is actually being used with zero-filling above.
// For the above-limit numbers, this tests Ryu's trimming.
{3355443e1f, chars_format::scientific, "3.355443e+07"},
{671087e2f, chars_format::scientific, "6.71087e+07"},
{134217e3f, chars_format::scientific, "1.34217e+08"},
{26843e4f, chars_format::scientific, "2.6843e+08"},
{5367e5f, chars_format::scientific, "5.367e+08"},
{1073e6f, chars_format::scientific, "1.073e+09"},
{213e7f, chars_format::scientific, "2.13e+09"},
{41e8f, chars_format::scientific, "4.1e+09"},
{7e9f, chars_format::scientific, "7e+09"},
{1e10f, chars_format::scientific, "1e+10"},
{3355445e1f, chars_format::scientific, "3.355445e+07"},
{671089e2f, chars_format::scientific, "6.71089e+07"},
{134219e3f, chars_format::scientific, "1.34219e+08"},
{26845e4f, chars_format::scientific, "2.6845e+08"},
{5369e5f, chars_format::scientific, "5.369e+08"},
{1075e6f, chars_format::scientific, "1.075e+09"},
{215e7f, chars_format::scientific, "2.15e+09"},
{43e8f, chars_format::scientific, "4.3e+09"},
{9e9f, chars_format::scientific, "9e+09"},
{3e10f, chars_format::scientific, "3e+10"},
{5495808e5f, chars_format::scientific, "5.495808e+11"},
{5497856e5f, chars_format::scientific, "5.497856e+11"},
// Test the switching logic of chars_format::general.
// C11 7.21.6.1 "The fprintf function"/8:
// "Let P equal [...] 6 if the precision is omitted [...].
// Then, if a conversion with style E would have an exponent of X:
// - if P > X >= -4, the conversion is with style f [...].
// - otherwise, the conversion is with style e [...]."
{1e-6f, chars_format::general, "1e-06"},
{1e-5f, chars_format::general, "1e-05"},
{1e-4f, chars_format::general, "0.0001"},
{1e-3f, chars_format::general, "0.001"},
{1e-2f, chars_format::general, "0.01"},
{1e-1f, chars_format::general, "0.1"},
{1e0f, chars_format::general, "1"},
{1e1f, chars_format::general, "10"},
{1e2f, chars_format::general, "100"},
{1e3f, chars_format::general, "1000"},
{1e4f, chars_format::general, "10000"},
{1e5f, chars_format::general, "100000"},
{1e6f, chars_format::general, "1e+06"},
{1e7f, chars_format::general, "1e+07"},
{1.234e-6f, chars_format::general, "1.234e-06"},
{1.234e-5f, chars_format::general, "1.234e-05"},
{1.234e-4f, chars_format::general, "0.0001234"},
{1.234e-3f, chars_format::general, "0.001234"},
{1.234e-2f, chars_format::general, "0.01234"},
{1.234e-1f, chars_format::general, "0.1234"},
{1.234e0f, chars_format::general, "1.234"},
{1.234e1f, chars_format::general, "12.34"},
{1.234e2f, chars_format::general, "123.4"},
{1.234e3f, chars_format::general, "1234"},
{1.234e4f, chars_format::general, "12340"},
{1.234e5f, chars_format::general, "123400"},
{1.234e6f, chars_format::general, "1.234e+06"},
{1.234e7f, chars_format::general, "1.234e+07"},
{1.234e8f, chars_format::general, "1.234e+08"},
{1.234e9f, chars_format::general, "1.234e+09"},
{1.234e10f, chars_format::general, "1.234e+10"},
// Test the switching logic of the plain overload.
// N4762 19.19.2 [charconv.to.chars]/8:
// "The conversion specifier is f or e, chosen according to the requirement
// for a shortest representation (see above); a tie is resolved in favor of f."
{1e-6f, chars_format{}, "1e-06"},
{1e-5f, chars_format{}, "1e-05"},
{1e-4f, chars_format{}, "1e-04"},
{1e-3f, chars_format{}, "0.001"},
{1e-2f, chars_format{}, "0.01"},
{1e-1f, chars_format{}, "0.1"},
{1e0f, chars_format{}, "1"},
{1e1f, chars_format{}, "10"},
{1e2f, chars_format{}, "100"},
{1e3f, chars_format{}, "1000"},
{1e4f, chars_format{}, "10000"},
{1e5f, chars_format{}, "1e+05"},
{1e6f, chars_format{}, "1e+06"},
{1e7f, chars_format{}, "1e+07"},
{1.234e-6f, chars_format{}, "1.234e-06"},
{1.234e-5f, chars_format{}, "1.234e-05"},
{1.234e-4f, chars_format{}, "0.0001234"},
{1.234e-3f, chars_format{}, "0.001234"},
{1.234e-2f, chars_format{}, "0.01234"},
{1.234e-1f, chars_format{}, "0.1234"},
{1.234e0f, chars_format{}, "1.234"},
{1.234e1f, chars_format{}, "12.34"},
{1.234e2f, chars_format{}, "123.4"},
{1.234e3f, chars_format{}, "1234"},
{1.234e4f, chars_format{}, "12340"},
{1.234e5f, chars_format{}, "123400"},
{1.234e6f, chars_format{}, "1234000"},
{1.234e7f, chars_format{}, "12340000"},
{1.234e8f, chars_format{}, "123400000"},
{1.234e9f, chars_format{}, "1.234e+09"},
{1.234e10f, chars_format{}, "1.234e+10"},
// Test hexfloat corner cases.
{0x1.728p+0f, chars_format::hex, "1.728p+0"}, // instead of "2.e5p-1"
{0x0.000002p-126f, chars_format::hex, "0.000002p-126"}, // instead of "1p-149", min subnormal
{0x0.fffffep-126f, chars_format::hex, "0.fffffep-126"}, // max subnormal
{0x1p-126f, chars_format::hex, "1p-126"}, // min normal
{0x1.fffffep+127f, chars_format::hex, "1.fffffep+127"}, // max normal
// Test hexfloat exponents.
{0x1p-109f, chars_format::hex, "1p-109"},
{0x1p-99f, chars_format::hex, "1p-99"},
{0x1p-9f, chars_format::hex, "1p-9"},
{0x1p+0f, chars_format::hex, "1p+0"},
{0x1p+9f, chars_format::hex, "1p+9"},
{0x1p+99f, chars_format::hex, "1p+99"},
{0x1p+109f, chars_format::hex, "1p+109"},
// Test hexfloat hexits.
{0x1.0123p+0f, chars_format::hex, "1.0123p+0"},
{0x1.4567p+0f, chars_format::hex, "1.4567p+0"},
{0x1.89abp+0f, chars_format::hex, "1.89abp+0"},
{0x1.cdefp+0f, chars_format::hex, "1.cdefp+0"},
// Test hexfloat trimming.
{0x1.00000ap+0f, chars_format::hex, "1.00000ap+0"},
{0x1.0000ap+0f, chars_format::hex, "1.0000ap+0"},
{0x1.000ap+0f, chars_format::hex, "1.000ap+0"},
{0x1.00ap+0f, chars_format::hex, "1.00ap+0"},
{0x1.0ap+0f, chars_format::hex, "1.0ap+0"},
{0x1.ap+0f, chars_format::hex, "1.ap+0"},
{0x1p+0f, chars_format::hex, "1p+0"},
// https://www.exploringbinary.com/the-shortest-decimal-string-that-round-trips-may-not-be-the-nearest/
// This is an exhaustive list of anomalous values.
// (See double_to_chars_test_cases.hpp for more details.)
{0x1p90f, chars_format::scientific, "1.2379401e+27"},
{0x1p87f, chars_format::scientific, "1.5474251e+26"},
{0x1p-96f, chars_format::scientific, "1.2621775e-29"},
};
#endif // FLOAT_TO_CHARS_TEST_CASES_HPP
|