1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
|
//===- RDFRegisters.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/BitVector.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/RDFRegisters.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <set>
#include <utility>
using namespace llvm;
using namespace rdf;
PhysicalRegisterInfo::PhysicalRegisterInfo(const TargetRegisterInfo &tri,
const MachineFunction &mf)
: TRI(tri) {
RegInfos.resize(TRI.getNumRegs());
BitVector BadRC(TRI.getNumRegs());
for (const TargetRegisterClass *RC : TRI.regclasses()) {
for (MCPhysReg R : *RC) {
RegInfo &RI = RegInfos[R];
if (RI.RegClass != nullptr && !BadRC[R]) {
if (RC->LaneMask != RI.RegClass->LaneMask) {
BadRC.set(R);
RI.RegClass = nullptr;
}
} else
RI.RegClass = RC;
}
}
UnitInfos.resize(TRI.getNumRegUnits());
for (uint32_t U = 0, NU = TRI.getNumRegUnits(); U != NU; ++U) {
if (UnitInfos[U].Reg != 0)
continue;
MCRegUnitRootIterator R(U, &TRI);
assert(R.isValid());
RegisterId F = *R;
++R;
if (R.isValid()) {
UnitInfos[U].Mask = LaneBitmask::getAll();
UnitInfos[U].Reg = F;
} else {
for (MCRegUnitMaskIterator I(F, &TRI); I.isValid(); ++I) {
std::pair<uint32_t,LaneBitmask> P = *I;
UnitInfo &UI = UnitInfos[P.first];
UI.Reg = F;
if (P.second.any()) {
UI.Mask = P.second;
} else {
if (const TargetRegisterClass *RC = RegInfos[F].RegClass)
UI.Mask = RC->LaneMask;
else
UI.Mask = LaneBitmask::getAll();
}
}
}
}
for (const uint32_t *RM : TRI.getRegMasks())
RegMasks.insert(RM);
for (const MachineBasicBlock &B : mf)
for (const MachineInstr &In : B)
for (const MachineOperand &Op : In.operands())
if (Op.isRegMask())
RegMasks.insert(Op.getRegMask());
MaskInfos.resize(RegMasks.size()+1);
for (uint32_t M = 1, NM = RegMasks.size(); M <= NM; ++M) {
BitVector PU(TRI.getNumRegUnits());
const uint32_t *MB = RegMasks.get(M);
for (unsigned I = 1, E = TRI.getNumRegs(); I != E; ++I) {
if (!(MB[I / 32] & (1u << (I % 32))))
continue;
for (MCRegUnitIterator U(MCRegister::from(I), &TRI); U.isValid(); ++U)
PU.set(*U);
}
MaskInfos[M].Units = PU.flip();
}
AliasInfos.resize(TRI.getNumRegUnits());
for (uint32_t U = 0, NU = TRI.getNumRegUnits(); U != NU; ++U) {
BitVector AS(TRI.getNumRegs());
for (MCRegUnitRootIterator R(U, &TRI); R.isValid(); ++R)
for (MCSuperRegIterator S(*R, &TRI, true); S.isValid(); ++S)
AS.set(*S);
AliasInfos[U].Regs = AS;
}
}
std::set<RegisterId> PhysicalRegisterInfo::getAliasSet(RegisterId Reg) const {
// Do not include RR in the alias set.
std::set<RegisterId> AS;
assert(isRegMaskId(Reg) || Register::isPhysicalRegister(Reg));
if (isRegMaskId(Reg)) {
// XXX SLOW
const uint32_t *MB = getRegMaskBits(Reg);
for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i) {
if (MB[i/32] & (1u << (i%32)))
continue;
AS.insert(i);
}
for (const uint32_t *RM : RegMasks) {
RegisterId MI = getRegMaskId(RM);
if (MI != Reg && aliasMM(RegisterRef(Reg), RegisterRef(MI)))
AS.insert(MI);
}
return AS;
}
for (MCRegAliasIterator AI(Reg, &TRI, false); AI.isValid(); ++AI)
AS.insert(*AI);
for (const uint32_t *RM : RegMasks) {
RegisterId MI = getRegMaskId(RM);
if (aliasRM(RegisterRef(Reg), RegisterRef(MI)))
AS.insert(MI);
}
return AS;
}
bool PhysicalRegisterInfo::aliasRR(RegisterRef RA, RegisterRef RB) const {
assert(Register::isPhysicalRegister(RA.Reg));
assert(Register::isPhysicalRegister(RB.Reg));
MCRegUnitMaskIterator UMA(RA.Reg, &TRI);
MCRegUnitMaskIterator UMB(RB.Reg, &TRI);
// Reg units are returned in the numerical order.
while (UMA.isValid() && UMB.isValid()) {
// Skip units that are masked off in RA.
std::pair<RegisterId,LaneBitmask> PA = *UMA;
if (PA.second.any() && (PA.second & RA.Mask).none()) {
++UMA;
continue;
}
// Skip units that are masked off in RB.
std::pair<RegisterId,LaneBitmask> PB = *UMB;
if (PB.second.any() && (PB.second & RB.Mask).none()) {
++UMB;
continue;
}
if (PA.first == PB.first)
return true;
if (PA.first < PB.first)
++UMA;
else if (PB.first < PA.first)
++UMB;
}
return false;
}
bool PhysicalRegisterInfo::aliasRM(RegisterRef RR, RegisterRef RM) const {
assert(Register::isPhysicalRegister(RR.Reg) && isRegMaskId(RM.Reg));
const uint32_t *MB = getRegMaskBits(RM.Reg);
bool Preserved = MB[RR.Reg/32] & (1u << (RR.Reg%32));
// If the lane mask information is "full", e.g. when the given lane mask
// is a superset of the lane mask from the register class, check the regmask
// bit directly.
if (RR.Mask == LaneBitmask::getAll())
return !Preserved;
const TargetRegisterClass *RC = RegInfos[RR.Reg].RegClass;
if (RC != nullptr && (RR.Mask & RC->LaneMask) == RC->LaneMask)
return !Preserved;
// Otherwise, check all subregisters whose lane mask overlaps the given
// mask. For each such register, if it is preserved by the regmask, then
// clear the corresponding bits in the given mask. If at the end, all
// bits have been cleared, the register does not alias the regmask (i.e.
// is it preserved by it).
LaneBitmask M = RR.Mask;
for (MCSubRegIndexIterator SI(RR.Reg, &TRI); SI.isValid(); ++SI) {
LaneBitmask SM = TRI.getSubRegIndexLaneMask(SI.getSubRegIndex());
if ((SM & RR.Mask).none())
continue;
unsigned SR = SI.getSubReg();
if (!(MB[SR/32] & (1u << (SR%32))))
continue;
// The subregister SR is preserved.
M &= ~SM;
if (M.none())
return false;
}
return true;
}
bool PhysicalRegisterInfo::aliasMM(RegisterRef RM, RegisterRef RN) const {
assert(isRegMaskId(RM.Reg) && isRegMaskId(RN.Reg));
unsigned NumRegs = TRI.getNumRegs();
const uint32_t *BM = getRegMaskBits(RM.Reg);
const uint32_t *BN = getRegMaskBits(RN.Reg);
for (unsigned w = 0, nw = NumRegs/32; w != nw; ++w) {
// Intersect the negations of both words. Disregard reg=0,
// i.e. 0th bit in the 0th word.
uint32_t C = ~BM[w] & ~BN[w];
if (w == 0)
C &= ~1;
if (C)
return true;
}
// Check the remaining registers in the last word.
unsigned TailRegs = NumRegs % 32;
if (TailRegs == 0)
return false;
unsigned TW = NumRegs / 32;
uint32_t TailMask = (1u << TailRegs) - 1;
if (~BM[TW] & ~BN[TW] & TailMask)
return true;
return false;
}
RegisterRef PhysicalRegisterInfo::mapTo(RegisterRef RR, unsigned R) const {
if (RR.Reg == R)
return RR;
if (unsigned Idx = TRI.getSubRegIndex(R, RR.Reg))
return RegisterRef(R, TRI.composeSubRegIndexLaneMask(Idx, RR.Mask));
if (unsigned Idx = TRI.getSubRegIndex(RR.Reg, R)) {
const RegInfo &RI = RegInfos[R];
LaneBitmask RCM = RI.RegClass ? RI.RegClass->LaneMask
: LaneBitmask::getAll();
LaneBitmask M = TRI.reverseComposeSubRegIndexLaneMask(Idx, RR.Mask);
return RegisterRef(R, M & RCM);
}
llvm_unreachable("Invalid arguments: unrelated registers?");
}
bool RegisterAggr::hasAliasOf(RegisterRef RR) const {
if (PhysicalRegisterInfo::isRegMaskId(RR.Reg))
return Units.anyCommon(PRI.getMaskUnits(RR.Reg));
for (MCRegUnitMaskIterator U(RR.Reg, &PRI.getTRI()); U.isValid(); ++U) {
std::pair<uint32_t,LaneBitmask> P = *U;
if (P.second.none() || (P.second & RR.Mask).any())
if (Units.test(P.first))
return true;
}
return false;
}
bool RegisterAggr::hasCoverOf(RegisterRef RR) const {
if (PhysicalRegisterInfo::isRegMaskId(RR.Reg)) {
BitVector T(PRI.getMaskUnits(RR.Reg));
return T.reset(Units).none();
}
for (MCRegUnitMaskIterator U(RR.Reg, &PRI.getTRI()); U.isValid(); ++U) {
std::pair<uint32_t,LaneBitmask> P = *U;
if (P.second.none() || (P.second & RR.Mask).any())
if (!Units.test(P.first))
return false;
}
return true;
}
RegisterAggr &RegisterAggr::insert(RegisterRef RR) {
if (PhysicalRegisterInfo::isRegMaskId(RR.Reg)) {
Units |= PRI.getMaskUnits(RR.Reg);
return *this;
}
for (MCRegUnitMaskIterator U(RR.Reg, &PRI.getTRI()); U.isValid(); ++U) {
std::pair<uint32_t,LaneBitmask> P = *U;
if (P.second.none() || (P.second & RR.Mask).any())
Units.set(P.first);
}
return *this;
}
RegisterAggr &RegisterAggr::insert(const RegisterAggr &RG) {
Units |= RG.Units;
return *this;
}
RegisterAggr &RegisterAggr::intersect(RegisterRef RR) {
return intersect(RegisterAggr(PRI).insert(RR));
}
RegisterAggr &RegisterAggr::intersect(const RegisterAggr &RG) {
Units &= RG.Units;
return *this;
}
RegisterAggr &RegisterAggr::clear(RegisterRef RR) {
return clear(RegisterAggr(PRI).insert(RR));
}
RegisterAggr &RegisterAggr::clear(const RegisterAggr &RG) {
Units.reset(RG.Units);
return *this;
}
RegisterRef RegisterAggr::intersectWith(RegisterRef RR) const {
RegisterAggr T(PRI);
T.insert(RR).intersect(*this);
if (T.empty())
return RegisterRef();
RegisterRef NR = T.makeRegRef();
assert(NR);
return NR;
}
RegisterRef RegisterAggr::clearIn(RegisterRef RR) const {
return RegisterAggr(PRI).insert(RR).clear(*this).makeRegRef();
}
RegisterRef RegisterAggr::makeRegRef() const {
int U = Units.find_first();
if (U < 0)
return RegisterRef();
// Find the set of all registers that are aliased to all the units
// in this aggregate.
// Get all the registers aliased to the first unit in the bit vector.
BitVector Regs = PRI.getUnitAliases(U);
U = Units.find_next(U);
// For each other unit, intersect it with the set of all registers
// aliased that unit.
while (U >= 0) {
Regs &= PRI.getUnitAliases(U);
U = Units.find_next(U);
}
// If there is at least one register remaining, pick the first one,
// and consolidate the masks of all of its units contained in this
// aggregate.
int F = Regs.find_first();
if (F <= 0)
return RegisterRef();
LaneBitmask M;
for (MCRegUnitMaskIterator I(F, &PRI.getTRI()); I.isValid(); ++I) {
std::pair<uint32_t,LaneBitmask> P = *I;
if (Units.test(P.first))
M |= P.second.none() ? LaneBitmask::getAll() : P.second;
}
return RegisterRef(F, M);
}
void RegisterAggr::print(raw_ostream &OS) const {
OS << '{';
for (int U = Units.find_first(); U >= 0; U = Units.find_next(U))
OS << ' ' << printRegUnit(U, &PRI.getTRI());
OS << " }";
}
RegisterAggr::rr_iterator::rr_iterator(const RegisterAggr &RG,
bool End)
: Owner(&RG) {
for (int U = RG.Units.find_first(); U >= 0; U = RG.Units.find_next(U)) {
RegisterRef R = RG.PRI.getRefForUnit(U);
Masks[R.Reg] |= R.Mask;
}
Pos = End ? Masks.end() : Masks.begin();
Index = End ? Masks.size() : 0;
}
raw_ostream &rdf::operator<<(raw_ostream &OS, const RegisterAggr &A) {
A.print(OS);
return OS;
}
|