| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 
 | //=- AArch64CallingConv.td - Calling Conventions for AArch64 -*- tablegen -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This describes the calling conventions for AArch64 architecture.
//
//===----------------------------------------------------------------------===//
/// CCIfBigEndian - Match only if we're in big endian mode.
class CCIfBigEndian<CCAction A> :
  CCIf<"State.getMachineFunction().getDataLayout().isBigEndian()", A>;
class CCIfILP32<CCAction A> :
  CCIf<"State.getMachineFunction().getDataLayout().getPointerSize() == 4", A>;
//===----------------------------------------------------------------------===//
// ARM AAPCS64 Calling Convention
//===----------------------------------------------------------------------===//
let Entry = 1 in
def CC_AArch64_AAPCS : CallingConv<[
  CCIfType<[iPTR], CCBitConvertToType<i64>>,
  CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
  CCIfType<[v2f64, v4f32], CCBitConvertToType<v2i64>>,
  // Big endian vectors must be passed as if they were 1-element vectors so that
  // their lanes are in a consistent order.
  CCIfBigEndian<CCIfType<[v2i32, v2f32, v4i16, v4f16, v4bf16, v8i8],
                         CCBitConvertToType<f64>>>,
  CCIfBigEndian<CCIfType<[v2i64, v2f64, v4i32, v4f32, v8i16, v8f16, v8bf16, v16i8],
                         CCBitConvertToType<f128>>>,
  // In AAPCS, an SRet is passed in X8, not X0 like a normal pointer parameter.
  // However, on windows, in some circumstances, the SRet is passed in X0 or X1
  // instead.  The presence of the inreg attribute indicates that SRet is
  // passed in the alternative register (X0 or X1), not X8:
  // - X0 for non-instance methods.
  // - X1 for instance methods.
  // The "sret" attribute identifies indirect returns.
  // The "inreg" attribute identifies non-aggregate types.
  // The position of the "sret" attribute identifies instance/non-instance
  // methods.
  // "sret" on argument 0 means non-instance methods.
  // "sret" on argument 1 means instance methods.
  CCIfInReg<CCIfType<[i64],
    CCIfSRet<CCIfType<[i64], CCAssignToReg<[X0, X1]>>>>>,
  CCIfSRet<CCIfType<[i64], CCAssignToReg<[X8]>>>,
  // Put ByVal arguments directly on the stack. Minimum size and alignment of a
  // slot is 64-bit.
  CCIfByVal<CCPassByVal<8, 8>>,
  // The 'nest' parameter, if any, is passed in X18.
  // Darwin uses X18 as the platform register and hence 'nest' isn't currently
  // supported there.
  CCIfNest<CCAssignToReg<[X18]>>,
  // Pass SwiftSelf in a callee saved register.
  CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[X20]>>>,
  // A SwiftError is passed in X21.
  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[X21]>>>,
  // Pass SwiftAsync in an otherwise callee saved register so that it will be
  // preserved for normal function calls.
  CCIfSwiftAsync<CCIfType<[i64], CCAssignToReg<[X22]>>>,
  CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
  CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
            nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64],
           CCAssignToReg<[Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7]>>,
  CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
            nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64],
           CCPassIndirect<i64>>,
  CCIfType<[nxv1i1, nxv2i1, nxv4i1, nxv8i1, nxv16i1],
           CCAssignToReg<[P0, P1, P2, P3]>>,
  CCIfType<[nxv1i1, nxv2i1, nxv4i1, nxv8i1, nxv16i1],
           CCPassIndirect<i64>>,
  // Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers,
  // up to eight each of GPR and FPR.
  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
  CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3, W4, W5, W6, W7]>>,
  // i128 is split to two i64s, we can't fit half to register X7.
  CCIfType<[i64], CCIfSplit<CCAssignToRegWithShadow<[X0, X2, X4, X6],
                                                    [X0, X1, X3, X5]>>>,
  // i128 is split to two i64s, and its stack alignment is 16 bytes.
  CCIfType<[i64], CCIfSplit<CCAssignToStackWithShadow<8, 16, [X7]>>>,
  CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>,
  CCIfType<[f16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
  CCIfType<[bf16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
  CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>,
  CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
  CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
           CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
  CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
           CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
  // If more than will fit in registers, pass them on the stack instead.
  CCIfType<[i1, i8, i16, f16, bf16], CCAssignToStack<8, 8>>,
  CCIfType<[i32, f32], CCAssignToStack<8, 8>>,
  CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8, v4f16, v4bf16],
           CCAssignToStack<8, 8>>,
  CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
           CCAssignToStack<16, 16>>
]>;
let Entry = 1 in
def RetCC_AArch64_AAPCS : CallingConv<[
  CCIfType<[iPTR], CCBitConvertToType<i64>>,
  CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
  CCIfType<[v2f64, v4f32], CCBitConvertToType<v2i64>>,
  CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[X21]>>>,
  // Big endian vectors must be passed as if they were 1-element vectors so that
  // their lanes are in a consistent order.
  CCIfBigEndian<CCIfType<[v2i32, v2f32, v4i16, v4f16, v4bf16, v8i8],
                         CCBitConvertToType<f64>>>,
  CCIfBigEndian<CCIfType<[v2i64, v2f64, v4i32, v4f32, v8i16, v8f16, v8bf16, v16i8],
                         CCBitConvertToType<f128>>>,
  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
  CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3, W4, W5, W6, W7]>>,
  CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>,
  CCIfType<[f16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
  CCIfType<[bf16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
  CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>,
  CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
  CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
      CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
  CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
      CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
  CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
            nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64],
           CCAssignToReg<[Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7]>>,
  CCIfType<[nxv1i1, nxv2i1, nxv4i1, nxv8i1, nxv16i1],
           CCAssignToReg<[P0, P1, P2, P3]>>
]>;
// Vararg functions on windows pass floats in integer registers
let Entry = 1 in
def CC_AArch64_Win64_VarArg : CallingConv<[
  CCIfType<[f16, bf16], CCBitConvertToType<i16>>,
  CCIfType<[f32], CCBitConvertToType<i32>>,
  CCIfType<[f64], CCBitConvertToType<i64>>,
  CCDelegateTo<CC_AArch64_AAPCS>
]>;
// Windows Control Flow Guard checks take a single argument (the target function
// address) and have no return value.
let Entry = 1 in
def CC_AArch64_Win64_CFGuard_Check : CallingConv<[
  CCIfType<[i64], CCAssignToReg<[X15]>>
]>;
// Darwin uses a calling convention which differs in only two ways
// from the standard one at this level:
//     + i128s (i.e. split i64s) don't need even registers.
//     + Stack slots are sized as needed rather than being at least 64-bit.
let Entry = 1 in
def CC_AArch64_DarwinPCS : CallingConv<[
  CCIfType<[iPTR], CCBitConvertToType<i64>>,
  CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
  CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
  // An SRet is passed in X8, not X0 like a normal pointer parameter.
  CCIfSRet<CCIfType<[i64], CCAssignToReg<[X8]>>>,
  // Put ByVal arguments directly on the stack. Minimum size and alignment of a
  // slot is 64-bit.
  CCIfByVal<CCPassByVal<8, 8>>,
  // Pass SwiftSelf in a callee saved register.
  CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[X20]>>>,
  // A SwiftError is passed in X21.
  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[X21]>>>,
  // Pass SwiftAsync in an otherwise callee saved register so that it will be
  // preserved for normal function calls.
  CCIfSwiftAsync<CCIfType<[i64], CCAssignToReg<[X22]>>>,
  CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
  // Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers,
  // up to eight each of GPR and FPR.
  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
  CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3, W4, W5, W6, W7]>>,
  // i128 is split to two i64s, we can't fit half to register X7.
  CCIfType<[i64],
           CCIfSplit<CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6]>>>,
  // i128 is split to two i64s, and its stack alignment is 16 bytes.
  CCIfType<[i64], CCIfSplit<CCAssignToStackWithShadow<8, 16, [X7]>>>,
  CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>,
  CCIfType<[f16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
  CCIfType<[bf16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
  CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>,
  CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
  CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
           CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
  CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
           CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
  // If more than will fit in registers, pass them on the stack instead.
  CCIf<"ValVT == MVT::i1 || ValVT == MVT::i8", CCAssignToStack<1, 1>>,
  CCIf<"ValVT == MVT::i16 || ValVT == MVT::f16 || ValVT == MVT::bf16",
  CCAssignToStack<2, 2>>,
  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
  // Re-demote pointers to 32-bits so we don't end up storing 64-bit
  // values and clobbering neighbouring stack locations. Not very pretty.
  CCIfPtr<CCIfILP32<CCTruncToType<i32>>>,
  CCIfPtr<CCIfILP32<CCAssignToStack<4, 4>>>,
  CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8, v4f16, v4bf16],
           CCAssignToStack<8, 8>>,
  CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
           CCAssignToStack<16, 16>>
]>;
let Entry = 1 in
def CC_AArch64_DarwinPCS_VarArg : CallingConv<[
  CCIfType<[iPTR], CCBitConvertToType<i64>>,
  CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
  CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
  CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Stack_Block">>,
  // Handle all scalar types as either i64 or f64.
  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
  CCIfType<[f16, bf16, f32], CCPromoteToType<f64>>,
  // Everything is on the stack.
  // i128 is split to two i64s, and its stack alignment is 16 bytes.
  CCIfType<[i64], CCIfSplit<CCAssignToStack<8, 16>>>,
  CCIfType<[i64, f64, v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
           CCAssignToStack<8, 8>>,
  CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
           CCAssignToStack<16, 16>>
]>;
// In the ILP32 world, the minimum stack slot size is 4 bytes. Otherwise the
// same as the normal Darwin VarArgs handling.
let Entry = 1 in
def CC_AArch64_DarwinPCS_ILP32_VarArg : CallingConv<[
  CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
  CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
  // Handle all scalar types as either i32 or f32.
  CCIfType<[i8, i16], CCPromoteToType<i32>>,
  CCIfType<[f16, bf16], CCPromoteToType<f32>>,
  // Everything is on the stack.
  // i128 is split to two i64s, and its stack alignment is 16 bytes.
  CCIfPtr<CCIfILP32<CCTruncToType<i32>>>,
  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
  CCIfType<[i64], CCIfSplit<CCAssignToStack<8, 16>>>,
  CCIfType<[i64, f64, v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
           CCAssignToStack<8, 8>>,
  CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
           CCAssignToStack<16, 16>>
]>;
// The WebKit_JS calling convention only passes the first argument (the callee)
// in register and the remaining arguments on stack. We allow 32bit stack slots,
// so that WebKit can write partial values in the stack and define the other
// 32bit quantity as undef.
let Entry = 1 in
def CC_AArch64_WebKit_JS : CallingConv<[
  // Handle i1, i8, i16, i32, and i64 passing in register X0 (W0).
  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
  CCIfType<[i32], CCAssignToReg<[W0]>>,
  CCIfType<[i64], CCAssignToReg<[X0]>>,
  // Pass the remaining arguments on the stack instead.
  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
  CCIfType<[i64, f64], CCAssignToStack<8, 8>>
]>;
let Entry = 1 in
def RetCC_AArch64_WebKit_JS : CallingConv<[
  CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3, W4, W5, W6, W7]>>,
  CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>,
  CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>,
  CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>
]>;
//===----------------------------------------------------------------------===//
// ARM64 Calling Convention for GHC
//===----------------------------------------------------------------------===//
// This calling convention is specific to the Glasgow Haskell Compiler.
// The only documentation is the GHC source code, specifically the C header
// file:
//
//     https://github.com/ghc/ghc/blob/master/includes/stg/MachRegs.h
//
// which defines the registers for the Spineless Tagless G-Machine (STG) that
// GHC uses to implement lazy evaluation. The generic STG machine has a set of
// registers which are mapped to appropriate set of architecture specific
// registers for each CPU architecture.
//
// The STG Machine is documented here:
//
//    https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/GeneratedCode
//
// The AArch64 register mapping is under the heading "The ARMv8/AArch64 ABI
// register mapping".
let Entry = 1 in
def CC_AArch64_GHC : CallingConv<[
  CCIfType<[iPTR], CCBitConvertToType<i64>>,
  // Handle all vector types as either f64 or v2f64.
  CCIfType<[v1i64, v2i32, v4i16, v8i8, v2f32], CCBitConvertToType<f64>>,
  CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, f128], CCBitConvertToType<v2f64>>,
  CCIfType<[v2f64], CCAssignToReg<[Q4, Q5]>>,
  CCIfType<[f32], CCAssignToReg<[S8, S9, S10, S11]>>,
  CCIfType<[f64], CCAssignToReg<[D12, D13, D14, D15]>>,
  // Promote i8/i16/i32 arguments to i64.
  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
  // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
  CCIfType<[i64], CCAssignToReg<[X19, X20, X21, X22, X23, X24, X25, X26, X27, X28]>>
]>;
// The order of the callee-saves in this file is important, because the
// FrameLowering code will use this order to determine the layout the
// callee-save area in the stack frame. As can be observed below, Darwin
// requires the frame-record (LR, FP) to be at the top the callee-save area,
// whereas for other platforms they are at the bottom.
// FIXME: LR is only callee-saved in the sense that *we* preserve it and are
// presumably a callee to someone. External functions may not do so, but this
// is currently safe since BL has LR as an implicit-def and what happens after a
// tail call doesn't matter.
//
// It would be better to model its preservation semantics properly (create a
// vreg on entry, use it in RET & tail call generation; make that vreg def if we
// end up saving LR as part of a call frame). Watch this space...
def CSR_AArch64_AAPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
                                           X25, X26, X27, X28, LR, FP,
                                           D8,  D9,  D10, D11,
                                           D12, D13, D14, D15)>;
// A variant for treating X18 as callee saved, when interfacing with
// code that needs X18 to be preserved.
def CSR_AArch64_AAPCS_X18 : CalleeSavedRegs<(add X18, CSR_AArch64_AAPCS)>;
// Win64 has unwinding codes for an (FP,LR) pair, save_fplr and save_fplr_x.
// We put FP before LR, so that frame lowering logic generates (FP,LR) pairs,
// and not (LR,FP) pairs.
def CSR_Win_AArch64_AAPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
                                               X25, X26, X27, X28, FP, LR,
                                               D8, D9, D10, D11,
                                               D12, D13, D14, D15)>;
// The Control Flow Guard check call uses a custom calling convention that also
// preserves X0-X8 and Q0-Q7.
def CSR_Win_AArch64_CFGuard_Check : CalleeSavedRegs<(add CSR_Win_AArch64_AAPCS,
                                               (sequence "X%u", 0, 8),
                                               (sequence "Q%u", 0, 7))>;
// AArch64 PCS for vector functions (VPCS)
// must (additionally) preserve full Q8-Q23 registers
def CSR_AArch64_AAVPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
                                          X25, X26, X27, X28, LR, FP,
                                          (sequence "Q%u", 8, 23))>;
// Functions taking SVE arguments or returning an SVE type
// must (additionally) preserve full Z8-Z23 and predicate registers P4-P15
def CSR_AArch64_SVE_AAPCS : CalleeSavedRegs<(add (sequence "Z%u", 8, 23),
                                                 (sequence "P%u", 4, 15),
                                                 X19, X20, X21, X22, X23, X24,
                                                 X25, X26, X27, X28, LR, FP)>;
def CSR_AArch64_AAPCS_SwiftTail
    : CalleeSavedRegs<(sub CSR_AArch64_AAPCS, X20, X22)>;
// Constructors and destructors return 'this' in the iOS 64-bit C++ ABI; since
// 'this' and the pointer return value are both passed in X0 in these cases,
// this can be partially modelled by treating X0 as a callee-saved register;
// only the resulting RegMask is used; the SaveList is ignored
//
// (For generic ARM 64-bit ABI code, clang will not generate constructors or
// destructors with 'this' returns, so this RegMask will not be used in that
// case)
def CSR_AArch64_AAPCS_ThisReturn : CalleeSavedRegs<(add CSR_AArch64_AAPCS, X0)>;
def CSR_AArch64_AAPCS_SwiftError
    : CalleeSavedRegs<(sub CSR_AArch64_AAPCS, X21)>;
// The ELF stub used for TLS-descriptor access saves every feasible
// register. Only X0 and LR are clobbered.
def CSR_AArch64_TLS_ELF
    : CalleeSavedRegs<(add (sequence "X%u", 1, 28), FP,
                           (sequence "Q%u", 0, 31))>;
def CSR_AArch64_AllRegs
    : CalleeSavedRegs<(add (sequence "W%u", 0, 30), WSP,
                           (sequence "X%u", 0, 28), FP, LR, SP,
                           (sequence "B%u", 0, 31), (sequence "H%u", 0, 31),
                           (sequence "S%u", 0, 31), (sequence "D%u", 0, 31),
                           (sequence "Q%u", 0, 31))>;
def CSR_AArch64_NoRegs : CalleeSavedRegs<(add)>;
def CSR_AArch64_RT_MostRegs :  CalleeSavedRegs<(add CSR_AArch64_AAPCS,
                                                (sequence "X%u", 9, 15))>;
def CSR_AArch64_StackProbe_Windows
    : CalleeSavedRegs<(add (sequence "X%u", 0, 15),
                           (sequence "X%u", 18, 28), FP, SP,
                           (sequence "Q%u", 0, 31))>;
// Darwin variants of AAPCS.
// Darwin puts the frame-record at the top of the callee-save area.
def CSR_Darwin_AArch64_AAPCS : CalleeSavedRegs<(add LR, FP, X19, X20, X21, X22,
                                                X23, X24, X25, X26, X27, X28,
                                                D8,  D9,  D10, D11,
                                                D12, D13, D14, D15)>;
def CSR_Darwin_AArch64_AAVPCS : CalleeSavedRegs<(add LR, FP, X19, X20, X21,
                                                 X22, X23, X24, X25, X26, X27,
                                                 X28, (sequence "Q%u", 8, 23))>;
def CSR_Darwin_AArch64_AAPCS_ThisReturn
    : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS, X0)>;
def CSR_Darwin_AArch64_AAPCS_SwiftError
    : CalleeSavedRegs<(sub CSR_Darwin_AArch64_AAPCS, X21)>;
def CSR_Darwin_AArch64_AAPCS_SwiftTail
    : CalleeSavedRegs<(sub CSR_Darwin_AArch64_AAPCS, X20, X22)>;
// The function used by Darwin to obtain the address of a thread-local variable
// guarantees more than a normal AAPCS function. x16 and x17 are used on the
// fast path for calculation, but other registers except X0 (argument/return)
// and LR (it is a call, after all) are preserved.
def CSR_Darwin_AArch64_TLS
    : CalleeSavedRegs<(add (sub (sequence "X%u", 1, 28), X16, X17),
                           FP,
                           (sequence "Q%u", 0, 31))>;
// We can only handle a register pair with adjacent registers, the register pair
// should belong to the same class as well. Since the access function on the
// fast path calls a function that follows CSR_Darwin_AArch64_TLS,
// CSR_Darwin_AArch64_CXX_TLS should be a subset of CSR_Darwin_AArch64_TLS.
def CSR_Darwin_AArch64_CXX_TLS
    : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS,
                           (sub (sequence "X%u", 1, 28), X9, X15, X16, X17, X18, X19),
                           (sequence "D%u", 0, 31))>;
// CSRs that are handled by prologue, epilogue.
def CSR_Darwin_AArch64_CXX_TLS_PE
    : CalleeSavedRegs<(add LR, FP)>;
// CSRs that are handled explicitly via copies.
def CSR_Darwin_AArch64_CXX_TLS_ViaCopy
    : CalleeSavedRegs<(sub CSR_Darwin_AArch64_CXX_TLS, LR, FP)>;
def CSR_Darwin_AArch64_RT_MostRegs
    : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS, (sequence "X%u", 9, 15))>;
// Variants of the standard calling conventions for shadow call stack.
// These all preserve x18 in addition to any other registers.
def CSR_AArch64_NoRegs_SCS
    : CalleeSavedRegs<(add CSR_AArch64_NoRegs, X18)>;
def CSR_AArch64_AllRegs_SCS
    : CalleeSavedRegs<(add CSR_AArch64_AllRegs, X18)>;
def CSR_AArch64_AAPCS_SwiftError_SCS
    : CalleeSavedRegs<(add CSR_AArch64_AAPCS_SwiftError, X18)>;
def CSR_AArch64_RT_MostRegs_SCS
    : CalleeSavedRegs<(add CSR_AArch64_RT_MostRegs, X18)>;
def CSR_AArch64_AAVPCS_SCS
    : CalleeSavedRegs<(add CSR_AArch64_AAVPCS, X18)>;
def CSR_AArch64_SVE_AAPCS_SCS
    : CalleeSavedRegs<(add CSR_AArch64_SVE_AAPCS, X18)>;
def CSR_AArch64_AAPCS_SCS
    : CalleeSavedRegs<(add CSR_AArch64_AAPCS, X18)>;
 |