1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
|
//== LoongArchInstrInfo.td - Target Description for LoongArch -*- tablegen -*-//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the LoongArch instructions in TableGen format.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// LoongArch specific DAG Nodes.
//===----------------------------------------------------------------------===//
// Target-independent type requirements, but with target-specific formats.
def SDT_CallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>,
SDTCisVT<1, i32>]>;
def SDT_CallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>,
SDTCisVT<1, i32>]>;
// Target-dependent type requirements.
def SDT_LoongArchCall : SDTypeProfile<0, -1, [SDTCisVT<0, GRLenVT>]>;
def SDT_LoongArchIntBinOpW : SDTypeProfile<1, 2, [
SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisVT<0, i64>
]>;
def SDT_LoongArchBStrIns: SDTypeProfile<1, 4, [
SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<3>,
SDTCisSameAs<3, 4>
]>;
def SDT_LoongArchBStrPick: SDTypeProfile<1, 3, [
SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisInt<2>, SDTCisSameAs<2, 3>
]>;
// TODO: Add LoongArch specific DAG Nodes
// Target-independent nodes, but with target-specific formats.
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_CallSeqStart,
[SDNPHasChain, SDNPOutGlue]>;
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_CallSeqEnd,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
// Target-dependent nodes.
def loongarch_call : SDNode<"LoongArchISD::CALL", SDT_LoongArchCall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;
def loongarch_ret : SDNode<"LoongArchISD::RET", SDTNone,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def loongarch_sll_w : SDNode<"LoongArchISD::SLL_W", SDT_LoongArchIntBinOpW>;
def loongarch_sra_w : SDNode<"LoongArchISD::SRA_W", SDT_LoongArchIntBinOpW>;
def loongarch_srl_w : SDNode<"LoongArchISD::SRL_W", SDT_LoongArchIntBinOpW>;
def loongarch_bstrins
: SDNode<"LoongArchISD::BSTRINS", SDT_LoongArchBStrIns>;
def loongarch_bstrpick
: SDNode<"LoongArchISD::BSTRPICK", SDT_LoongArchBStrPick>;
//===----------------------------------------------------------------------===//
// Operand and SDNode transformation definitions.
//===----------------------------------------------------------------------===//
class ImmAsmOperand<string prefix, int width, string suffix>
: AsmOperandClass {
let Name = prefix # "Imm" # width # suffix;
let DiagnosticType = !strconcat("Invalid", Name);
let RenderMethod = "addImmOperands";
}
class SImmAsmOperand<int width, string suffix = "">
: ImmAsmOperand<"S", width, suffix> {
}
class UImmAsmOperand<int width, string suffix = "">
: ImmAsmOperand<"U", width, suffix> {
}
def uimm2 : Operand<GRLenVT> {
let ParserMatchClass = UImmAsmOperand<2>;
}
def uimm2_plus1 : Operand<GRLenVT> {
let ParserMatchClass = UImmAsmOperand<2, "plus1">;
let EncoderMethod = "getImmOpValueSub1";
let DecoderMethod = "decodeUImmOperand<2, 1>";
}
def uimm3 : Operand<GRLenVT> {
let ParserMatchClass = UImmAsmOperand<3>;
}
def uimm5 : Operand<GRLenVT>, ImmLeaf<GRLenVT, [{return isUInt<5>(Imm);}]> {
let ParserMatchClass = UImmAsmOperand<5>;
}
def uimm6 : Operand<GRLenVT>, ImmLeaf<GRLenVT, [{return isUInt<6>(Imm);}]> {
let ParserMatchClass = UImmAsmOperand<6>;
}
def uimm8 : Operand<GRLenVT> {
let ParserMatchClass = UImmAsmOperand<8>;
}
def uimm12 : Operand<GRLenVT>, ImmLeaf<GRLenVT, [{return isUInt<12>(Imm);}]> {
let ParserMatchClass = UImmAsmOperand<12>;
}
def uimm14 : Operand<GRLenVT> {
let ParserMatchClass = UImmAsmOperand<14>;
}
def uimm15 : Operand<GRLenVT> {
let ParserMatchClass = UImmAsmOperand<15>;
}
def simm12 : Operand<GRLenVT>, ImmLeaf<GRLenVT, [{return isInt<12>(Imm);}]> {
let ParserMatchClass = SImmAsmOperand<12>;
let DecoderMethod = "decodeSImmOperand<12>";
}
def simm14_lsl2 : Operand<GRLenVT> {
let ParserMatchClass = SImmAsmOperand<14, "lsl2">;
let EncoderMethod = "getImmOpValueAsr2";
let DecoderMethod = "decodeSImmOperand<14, 2>";
}
def simm16 : Operand<GRLenVT> {
let ParserMatchClass = SImmAsmOperand<16>;
let DecoderMethod = "decodeSImmOperand<16>";
}
def simm16_lsl2 : Operand<GRLenVT>,
ImmLeaf<GRLenVT, [{return isInt<16>(Imm>>2);}]> {
let ParserMatchClass = SImmAsmOperand<16, "lsl2">;
let EncoderMethod = "getImmOpValueAsr2";
let DecoderMethod = "decodeSImmOperand<16, 2>";
}
def simm16_lsl2_br : Operand<OtherVT> {
let ParserMatchClass = SImmAsmOperand<16, "lsl2">;
let EncoderMethod = "getImmOpValueAsr2";
let DecoderMethod = "decodeSImmOperand<16, 2>";
}
def simm20 : Operand<GRLenVT> {
let ParserMatchClass = SImmAsmOperand<20>;
let DecoderMethod = "decodeSImmOperand<20>";
}
def simm21_lsl2 : Operand<OtherVT> {
let ParserMatchClass = SImmAsmOperand<21, "lsl2">;
let EncoderMethod = "getImmOpValueAsr2";
let DecoderMethod = "decodeSImmOperand<21, 2>";
}
def simm26_lsl2 : Operand<OtherVT> {
let ParserMatchClass = SImmAsmOperand<26, "lsl2">;
let EncoderMethod = "getImmOpValueAsr2";
let DecoderMethod = "decodeSImmOperand<26, 2>";
}
// Standalone (codegen-only) immleaf patterns.
// A 12-bit signed immediate plus one where the imm range will be [-2047, 2048].
def simm12_plus1 : ImmLeaf<GRLenVT,
[{return (isInt<12>(Imm) && Imm != -2048) || Imm == 2048;}]>;
// Return the negation of an immediate value.
def NegImm : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(-N->getSExtValue(), SDLoc(N),
N->getValueType(0));
}]>;
// FP immediate patterns.
def fpimm0 : PatLeaf<(fpimm), [{return N->isExactlyValue(+0.0);}]>;
def fpimm0neg : PatLeaf<(fpimm), [{return N->isExactlyValue(-0.0);}]>;
def fpimm1 : PatLeaf<(fpimm), [{return N->isExactlyValue(+1.0);}]>;
def CallSymbol: AsmOperandClass {
let Name = "CallSymbol";
let RenderMethod = "addImmOperands";
let PredicateMethod = "isImm";
}
// A bare symbol used in call only.
def call_symbol : Operand<iPTR> {
let ParserMatchClass = CallSymbol;
}
def BaseAddr : ComplexPattern<iPTR, 1, "SelectBaseAddr">;
//===----------------------------------------------------------------------===//
// Instruction Formats
//===----------------------------------------------------------------------===//
include "LoongArchInstrFormats.td"
include "LoongArchFloatInstrFormats.td"
//===----------------------------------------------------------------------===//
// Instruction Class Templates
//===----------------------------------------------------------------------===//
class ALU_3R<bits<17> op, string opstr>
: Fmt3R<op, (outs GPR:$rd), (ins GPR:$rj, GPR:$rk), opstr, "$rd, $rj, $rk">;
class ALU_2R<bits<22> op, string opstr>
: Fmt2R<op, (outs GPR:$rd), (ins GPR:$rj), opstr, "$rd, $rj">;
class ALU_3RI2<bits<15> op, string opstr, Operand ImmOpnd>
: Fmt3RI2<op, (outs GPR:$rd), (ins GPR:$rj, GPR:$rk, ImmOpnd:$imm2), opstr,
"$rd, $rj, $rk, $imm2">;
class ALU_3RI3<bits<14> op, string opstr, Operand ImmOpnd>
: Fmt3RI3<op, (outs GPR:$rd), (ins GPR:$rj, GPR:$rk, ImmOpnd:$imm3), opstr,
"$rd, $rj, $rk, $imm3">;
class ALU_2RI5<bits<17> op, string opstr, Operand ImmOpnd>
: Fmt2RI5<op, (outs GPR:$rd), (ins GPR:$rj, ImmOpnd:$imm5), opstr,
"$rd, $rj, $imm5">;
class ALU_2RI6<bits<16> op, string opstr, Operand ImmOpnd>
: Fmt2RI6<op, (outs GPR:$rd), (ins GPR:$rj, ImmOpnd:$imm6), opstr,
"$rd, $rj, $imm6">;
class ALU_2RI12<bits<10> op, string opstr, Operand ImmOpnd>
: Fmt2RI12<op, (outs GPR:$rd), (ins GPR:$rj, ImmOpnd:$imm12), opstr,
"$rd, $rj, $imm12">;
class ALU_2RI16<bits<6> op, string opstr, Operand ImmOpnd>
: Fmt2RI16<op, (outs GPR:$rd), (ins GPR:$rj, ImmOpnd:$imm16), opstr,
"$rd, $rj, $imm16">;
class ALU_1RI20<bits<7> op, string opstr, Operand ImmOpnd>
: Fmt1RI20<op, (outs GPR:$rd), (ins ImmOpnd:$imm20), opstr, "$rd, $imm20">;
class MISC_I15<bits<17> op, string opstr>
: FmtI15<op, (outs), (ins uimm15:$imm15), opstr, "$imm15">;
class RDTIME_2R<bits<22> op, string opstr>
: Fmt2R<op, (outs GPR:$rd, GPR:$rj), (ins), opstr, "$rd, $rj">;
class BrCC_2RI16<bits<6> op, string opstr>
: Fmt2RI16<op, (outs), (ins GPR:$rj, GPR:$rd, simm16_lsl2_br:$imm16), opstr,
"$rj, $rd, $imm16"> {
let isBranch = 1;
let isTerminator = 1;
}
class BrCCZ_1RI21<bits<6> op, string opstr>
: Fmt1RI21<op, (outs), (ins GPR:$rj, simm21_lsl2:$imm21), opstr,
"$rj, $imm21"> {
let isBranch = 1;
let isTerminator = 1;
}
class Br_I26<bits<6> op, string opstr>
: FmtI26<op, (outs), (ins simm26_lsl2:$imm26), opstr, "$imm26"> {
let isBranch = 1;
let isTerminator = 1;
}
let mayLoad = 1 in {
class LOAD_3R<bits<17> op, string opstr>
: Fmt3R<op, (outs GPR:$rd), (ins GPR:$rj, GPR:$rk), opstr, "$rd, $rj, $rk">;
class LOAD_2RI12<bits<10> op, string opstr>
: Fmt2RI12<op, (outs GPR:$rd), (ins GPR:$rj, simm12:$imm12), opstr,
"$rd, $rj, $imm12">;
class LOAD_2RI14<bits<8> op, string opstr>
: Fmt2RI14<op, (outs GPR:$rd), (ins GPR:$rj, simm14_lsl2:$imm14), opstr,
"$rd, $rj, $imm14">;
} // mayLoad = 1
let mayStore = 1 in {
class STORE_3R<bits<17> op, string opstr>
: Fmt3R<op, (outs), (ins GPR:$rd, GPR:$rj, GPR:$rk), opstr,
"$rd, $rj, $rk">;
class STORE_2RI12<bits<10> op, string opstr>
: Fmt2RI12<op, (outs), (ins GPR:$rd, GPR:$rj, simm12:$imm12), opstr,
"$rd, $rj, $imm12">;
class STORE_2RI14<bits<8> op, string opstr>
: Fmt2RI14<op, (outs), (ins GPR:$rd, GPR:$rj, simm14_lsl2:$imm14), opstr,
"$rd, $rj, $imm14">;
} // mayStore = 1
let mayLoad = 1, mayStore = 1 in
class AM_3R<bits<17> op, string opstr>
: Fmt3R<op, (outs GPR:$rd), (ins GPR:$rk, GPR:$rj), opstr, "$rd, $rk, $rj">;
let mayLoad = 1 in
class LLBase<bits<8> op, string opstr>
: Fmt2RI14<op, (outs GPR:$rd), (ins GPR:$rj, simm14_lsl2:$imm14), opstr,
"$rd, $rj, $imm14">;
let mayStore = 1, Constraints = "$rd = $dst" in
class SCBase<bits<8> op, string opstr>
: Fmt2RI14<op, (outs GPR:$dst), (ins GPR:$rd, GPR:$rj, simm14_lsl2:$imm14),
opstr, "$rd, $rj, $imm14">;
class IOCSRRD<bits<22> op, string opstr>
: Fmt2R<op, (outs GPR:$rd), (ins GPR:$rj), opstr, "$rd, $rj">;
class IOCSRWR<bits<22> op, string opstr>
: Fmt2R<op, (outs), (ins GPR:$rd, GPR:$rj), opstr, "$rd, $rj">;
//===----------------------------------------------------------------------===//
// Basic Integer Instructions
//===----------------------------------------------------------------------===//
// Arithmetic Operation Instructions
def ADD_W : ALU_3R<0b00000000000100000, "add.w">;
def SUB_W : ALU_3R<0b00000000000100010, "sub.w">;
def ADDI_W : ALU_2RI12<0b0000001010, "addi.w", simm12>;
def ALSL_W : ALU_3RI2<0b000000000000010, "alsl.w", uimm2_plus1>;
def LU12I_W : ALU_1RI20<0b0001010, "lu12i.w", simm20>;
def SLT : ALU_3R<0b00000000000100100, "slt">;
def SLTU : ALU_3R<0b00000000000100101, "sltu">;
def SLTI : ALU_2RI12<0b0000001000, "slti", simm12>;
def SLTUI : ALU_2RI12<0b0000001001, "sltui", simm12>;
def PCADDI : ALU_1RI20<0b0001100, "pcaddi", simm20>;
def PCADDU12I : ALU_1RI20<0b0001110, "pcaddu12i", simm20>;
def PCALAU12I : ALU_1RI20<0b0001101, "pcalau12i", simm20>;
def AND : ALU_3R<0b00000000000101001, "and">;
def OR : ALU_3R<0b00000000000101010, "or">;
def NOR : ALU_3R<0b00000000000101000, "nor">;
def XOR : ALU_3R<0b00000000000101011, "xor">;
def ANDN : ALU_3R<0b00000000000101101, "andn">;
def ORN : ALU_3R<0b00000000000101100, "orn">;
def ANDI : ALU_2RI12<0b0000001101, "andi", uimm12>;
def ORI : ALU_2RI12<0b0000001110, "ori", uimm12>;
def XORI : ALU_2RI12<0b0000001111, "xori", uimm12>;
def MUL_W : ALU_3R<0b00000000000111000, "mul.w">;
def MULH_W : ALU_3R<0b00000000000111001, "mulh.w">;
def MULH_WU : ALU_3R<0b00000000000111010, "mulh.wu">;
let usesCustomInserter = true in {
def DIV_W : ALU_3R<0b00000000001000000, "div.w">;
def MOD_W : ALU_3R<0b00000000001000001, "mod.w">;
def DIV_WU : ALU_3R<0b00000000001000010, "div.wu">;
def MOD_WU : ALU_3R<0b00000000001000011, "mod.wu">;
} // usesCustomInserter = true
// Bit-shift Instructions
def SLL_W : ALU_3R<0b00000000000101110, "sll.w">;
def SRL_W : ALU_3R<0b00000000000101111, "srl.w">;
def SRA_W : ALU_3R<0b00000000000110000, "sra.w">;
def ROTR_W : ALU_3R<0b00000000000110110, "rotr.w">;
def SLLI_W : ALU_2RI5<0b00000000010000001, "slli.w", uimm5>;
def SRLI_W : ALU_2RI5<0b00000000010001001, "srli.w", uimm5>;
def SRAI_W : ALU_2RI5<0b00000000010010001, "srai.w", uimm5>;
def ROTRI_W : ALU_2RI5<0b00000000010011001, "rotri.w", uimm5>;
// Bit-manipulation Instructions
def EXT_W_B : ALU_2R<0b0000000000000000010111, "ext.w.b">;
def EXT_W_H : ALU_2R<0b0000000000000000010110, "ext.w.h">;
def CLO_W : ALU_2R<0b0000000000000000000100, "clo.w">;
def CLZ_W : ALU_2R<0b0000000000000000000101, "clz.w">;
def CTO_W : ALU_2R<0b0000000000000000000110, "cto.w">;
def CTZ_W : ALU_2R<0b0000000000000000000111, "ctz.w">;
def BYTEPICK_W : ALU_3RI2<0b000000000000100, "bytepick.w", uimm2>;
def REVB_2H : ALU_2R<0b0000000000000000001100, "revb.2h">;
def BITREV_4B : ALU_2R<0b0000000000000000010010, "bitrev.4b">;
def BITREV_W : ALU_2R<0b0000000000000000010100, "bitrev.w">;
let Constraints = "$rd = $dst" in {
def BSTRINS_W : FmtBSTR_W<0b000000000110, (outs GPR:$dst),
(ins GPR:$rd, GPR:$rj, uimm5:$msbw, uimm5:$lsbw),
"bstrins.w", "$rd, $rj, $msbw, $lsbw">;
}
def BSTRPICK_W : FmtBSTR_W<0b000000000111, (outs GPR:$rd),
(ins GPR:$rj, uimm5:$msbw, uimm5:$lsbw),
"bstrpick.w", "$rd, $rj, $msbw, $lsbw">;
def MASKEQZ : ALU_3R<0b00000000000100110, "maskeqz">;
def MASKNEZ : ALU_3R<0b00000000000100111, "masknez">;
// Branch Instructions
def BEQ : BrCC_2RI16<0b010110, "beq">;
def BNE : BrCC_2RI16<0b010111, "bne">;
def BLT : BrCC_2RI16<0b011000, "blt">;
def BGE : BrCC_2RI16<0b011001, "bge">;
def BLTU : BrCC_2RI16<0b011010, "bltu">;
def BGEU : BrCC_2RI16<0b011011, "bgeu">;
def BEQZ : BrCCZ_1RI21<0b010000, "beqz">;
def BNEZ : BrCCZ_1RI21<0b010001, "bnez">;
def B : Br_I26<0b010100, "b">;
let isCall = 1 in
def BL : FmtI26<0b010101, (outs), (ins simm26_lsl2:$imm26), "bl", "$imm26">;
def JIRL : Fmt2RI16<0b010011, (outs GPR:$rd),
(ins GPR:$rj, simm16_lsl2:$imm16), "jirl",
"$rd, $rj, $imm16">;
// Common Memory Access Instructions
def LD_B : LOAD_2RI12<0b0010100000, "ld.b">;
def LD_H : LOAD_2RI12<0b0010100001, "ld.h">;
def LD_W : LOAD_2RI12<0b0010100010, "ld.w">;
def LD_BU : LOAD_2RI12<0b0010101000, "ld.bu">;
def LD_HU : LOAD_2RI12<0b0010101001, "ld.hu">;
def ST_B : STORE_2RI12<0b0010100100, "st.b">;
def ST_H : STORE_2RI12<0b0010100101, "st.h">;
def ST_W : STORE_2RI12<0b0010100110, "st.w">;
def PRELD : FmtPRELD<(outs), (ins uimm5:$imm5, GPR:$rj, simm12:$imm12), "preld",
"$imm5, $rj, $imm12">;
// Atomic Memory Access Instructions
def LL_W : LLBase<0b00100000, "ll.w">;
def SC_W : SCBase<0b00100001, "sc.w">;
// Barrier Instructions
def DBAR : MISC_I15<0b00111000011100100, "dbar">;
def IBAR : MISC_I15<0b00111000011100101, "ibar">;
// Other Miscellaneous Instructions
def SYSCALL : MISC_I15<0b00000000001010110, "syscall">;
def BREAK : MISC_I15<0b00000000001010100, "break">;
def RDTIMEL_W : RDTIME_2R<0b0000000000000000011000, "rdtimel.w">;
def RDTIMEH_W : RDTIME_2R<0b0000000000000000011001, "rdtimeh.w">;
def CPUCFG : ALU_2R<0b0000000000000000011011, "cpucfg">;
/// LA64 instructions
let Predicates = [IsLA64] in {
// Arithmetic Operation Instructions for 64-bits
def ADD_D : ALU_3R<0b00000000000100001, "add.d">;
def SUB_D : ALU_3R<0b00000000000100011, "sub.d">;
def ADDI_D : ALU_2RI12<0b0000001011, "addi.d", simm12>;
def ADDU16I_D : ALU_2RI16<0b000100, "addu16i.d", simm16>;
def ALSL_WU : ALU_3RI2<0b000000000000011, "alsl.wu", uimm2_plus1>;
def ALSL_D : ALU_3RI2<0b000000000010110, "alsl.d", uimm2_plus1>;
let Constraints = "$rd = $dst" in {
def LU32I_D : Fmt1RI20<0b0001011, (outs GPR:$dst),
(ins GPR:$rd, simm20:$imm20), "lu32i.d",
"$rd, $imm20">;
}
def LU52I_D : ALU_2RI12<0b0000001100, "lu52i.d", simm12>;
def PCADDU18I : ALU_1RI20<0b0001111, "pcaddu18i", simm20>;
def MUL_D : ALU_3R<0b00000000000111011, "mul.d">;
def MULH_D : ALU_3R<0b00000000000111100, "mulh.d">;
def MULH_DU : ALU_3R<0b00000000000111101, "mulh.du">;
def MULW_D_W : ALU_3R<0b00000000000111110, "mulw.d.w">;
def MULW_D_WU : ALU_3R<0b00000000000111111, "mulw.d.wu">;
let usesCustomInserter = true in {
def DIV_D : ALU_3R<0b00000000001000100, "div.d">;
def MOD_D : ALU_3R<0b00000000001000101, "mod.d">;
def DIV_DU : ALU_3R<0b00000000001000110, "div.du">;
def MOD_DU : ALU_3R<0b00000000001000111, "mod.du">;
} // usesCustomInserter = true
// Bit-shift Instructions for 64-bits
def SLL_D : ALU_3R<0b00000000000110001, "sll.d">;
def SRL_D : ALU_3R<0b00000000000110010, "srl.d">;
def SRA_D : ALU_3R<0b00000000000110011, "sra.d">;
def ROTR_D : ALU_3R<0b00000000000110111, "rotr.d">;
def SLLI_D : ALU_2RI6<0b0000000001000001, "slli.d", uimm6>;
def SRLI_D : ALU_2RI6<0b0000000001000101, "srli.d", uimm6>;
def SRAI_D : ALU_2RI6<0b0000000001001001, "srai.d", uimm6>;
def ROTRI_D : ALU_2RI6<0b0000000001001101, "rotri.d", uimm6>;
// Bit-manipulation Instructions for 64-bits
def CLO_D : ALU_2R<0b0000000000000000001000, "clo.d">;
def CLZ_D : ALU_2R<0b0000000000000000001001, "clz.d">;
def CTO_D : ALU_2R<0b0000000000000000001010, "cto.d">;
def CTZ_D : ALU_2R<0b0000000000000000001011, "ctz.d">;
def BYTEPICK_D : ALU_3RI3<0b00000000000011, "bytepick.d", uimm3>;
def REVB_4H : ALU_2R<0b0000000000000000001101, "revb.4h">;
def REVB_2W : ALU_2R<0b0000000000000000001110, "revb.2w">;
def REVB_D : ALU_2R<0b0000000000000000001111, "revb.d">;
def REVH_2W : ALU_2R<0b0000000000000000010000, "revh.2w">;
def REVH_D : ALU_2R<0b0000000000000000010001, "revh.d">;
def BITREV_8B : ALU_2R<0b0000000000000000010011, "bitrev.8b">;
def BITREV_D : ALU_2R<0b0000000000000000010101, "bitrev.d">;
let Constraints = "$rd = $dst" in {
def BSTRINS_D : FmtBSTR_D<0b0000000010, (outs GPR:$dst),
(ins GPR:$rd, GPR:$rj, uimm6:$msbd, uimm6:$lsbd),
"bstrins.d", "$rd, $rj, $msbd, $lsbd">;
}
def BSTRPICK_D : FmtBSTR_D<0b0000000011, (outs GPR:$rd),
(ins GPR:$rj, uimm6:$msbd, uimm6:$lsbd),
"bstrpick.d", "$rd, $rj, $msbd, $lsbd">;
// Common Memory Access Instructions for 64-bits
def LD_WU : LOAD_2RI12<0b0010101010, "ld.wu">;
def LD_D : LOAD_2RI12<0b0010100011, "ld.d">;
def ST_D : STORE_2RI12<0b0010100111, "st.d">;
def LDX_B : LOAD_3R<0b00111000000000000, "ldx.b">;
def LDX_H : LOAD_3R<0b00111000000001000, "ldx.h">;
def LDX_W : LOAD_3R<0b00111000000010000, "ldx.w">;
def LDX_D : LOAD_3R<0b00111000000011000, "ldx.d">;
def LDX_BU : LOAD_3R<0b00111000001000000, "ldx.bu">;
def LDX_HU : LOAD_3R<0b00111000001001000, "ldx.hu">;
def LDX_WU : LOAD_3R<0b00111000001010000, "ldx.wu">;
def STX_B : STORE_3R<0b00111000000100000, "stx.b">;
def STX_H : STORE_3R<0b00111000000101000, "stx.h">;
def STX_W : STORE_3R<0b00111000000110000, "stx.w">;
def STX_D : STORE_3R<0b00111000000111000, "stx.d">;
def LDPTR_W : LOAD_2RI14<0b00100100, "ldptr.w">;
def LDPTR_D : LOAD_2RI14<0b00100110, "ldptr.d">;
def STPTR_W : STORE_2RI14<0b00100101, "stptr.w">;
def STPTR_D : STORE_2RI14<0b00100111, "stptr.d">;
def PRELDX : FmtPRELDX<(outs), (ins uimm5:$imm5, GPR:$rj, GPR:$rk), "preldx",
"$imm5, $rj, $rk">;
// Bound Check Memory Access Instructions
def LDGT_B : LOAD_3R<0b00111000011110000, "ldgt.b">;
def LDGT_H : LOAD_3R<0b00111000011110001, "ldgt.h">;
def LDGT_W : LOAD_3R<0b00111000011110010, "ldgt.w">;
def LDGT_D : LOAD_3R<0b00111000011110011, "ldgt.d">;
def LDLE_B : LOAD_3R<0b00111000011110100, "ldle.b">;
def LDLE_H : LOAD_3R<0b00111000011110101, "ldle.h">;
def LDLE_W : LOAD_3R<0b00111000011110110, "ldle.w">;
def LDLE_D : LOAD_3R<0b00111000011110111, "ldle.d">;
def STGT_B : STORE_3R<0b00111000011111000, "stgt.b">;
def STGT_H : STORE_3R<0b00111000011111001, "stgt.h">;
def STGT_W : STORE_3R<0b00111000011111010, "stgt.w">;
def STGT_D : STORE_3R<0b00111000011111011, "stgt.d">;
def STLE_B : STORE_3R<0b00111000011111100, "stle.b">;
def STLE_H : STORE_3R<0b00111000011111101, "stle.h">;
def STLE_W : STORE_3R<0b00111000011111110, "stle.w">;
def STLE_D : STORE_3R<0b00111000011111111, "stle.d">;
// Atomic Memory Access Instructions for 64-bits
def AMSWAP_W : AM_3R<0b00111000011000000, "amswap.w">;
def AMSWAP_D : AM_3R<0b00111000011000001, "amswap.d">;
def AMADD_W : AM_3R<0b00111000011000010, "amadd.w">;
def AMADD_D : AM_3R<0b00111000011000011, "amadd.d">;
def AMAND_W : AM_3R<0b00111000011000100, "amand.w">;
def AMAND_D : AM_3R<0b00111000011000101, "amand.d">;
def AMOR_W : AM_3R<0b00111000011000110, "amor.w">;
def AMOR_D : AM_3R<0b00111000011000111, "amor.d">;
def AMXOR_W : AM_3R<0b00111000011001000, "amxor.w">;
def AMXOR_D : AM_3R<0b00111000011001001, "amxor.d">;
def AMMAX_W : AM_3R<0b00111000011001010, "ammax.w">;
def AMMAX_D : AM_3R<0b00111000011001011, "ammax.d">;
def AMMIN_W : AM_3R<0b00111000011001100, "ammin.w">;
def AMMIN_D : AM_3R<0b00111000011001101, "ammin.d">;
def AMMAX_WU : AM_3R<0b00111000011001110, "ammax.wu">;
def AMMAX_DU : AM_3R<0b00111000011001111, "ammax.du">;
def AMMIN_WU : AM_3R<0b00111000011010000, "ammin.wu">;
def AMMIN_DU : AM_3R<0b00111000011010001, "ammin.du">;
def AMSWAP_DB_W : AM_3R<0b00111000011010010, "amswap_db.w">;
def AMSWAP_DB_D : AM_3R<0b00111000011010011, "amswap_db.d">;
def AMADD_DB_W : AM_3R<0b00111000011010100, "amadd_db.w">;
def AMADD_DB_D : AM_3R<0b00111000011010101, "amadd_db.d">;
def AMAND_DB_W : AM_3R<0b00111000011010110, "amand_db.w">;
def AMAND_DB_D : AM_3R<0b00111000011010111, "amand_db.d">;
def AMOR_DB_W : AM_3R<0b00111000011011000, "amor_db.w">;
def AMOR_DB_D : AM_3R<0b00111000011011001, "amor_db.d">;
def AMXOR_DB_W : AM_3R<0b00111000011011010, "amxor_db.w">;
def AMXOR_DB_D : AM_3R<0b00111000011011011, "amxor_db.d">;
def AMMAX_DB_W : AM_3R<0b00111000011011100, "ammax_db.w">;
def AMMAX_DB_D : AM_3R<0b00111000011011101, "ammax_db.d">;
def AMMIN_DB_W : AM_3R<0b00111000011011110, "ammin_db.w">;
def AMMIN_DB_D : AM_3R<0b00111000011011111, "ammin_db.d">;
def AMMAX_DB_WU : AM_3R<0b00111000011100000, "ammax_db.wu">;
def AMMAX_DB_DU : AM_3R<0b00111000011100001, "ammax_db.du">;
def AMMIN_DB_WU : AM_3R<0b00111000011100010, "ammin_db.wu">;
def AMMIN_DB_DU : AM_3R<0b00111000011100011, "ammin_db.du">;
def LL_D : LLBase<0b00100010, "ll.d">;
def SC_D : SCBase<0b00100011, "sc.d">;
// CRC Check Instructions
def CRC_W_B_W : ALU_3R<0b00000000001001000, "crc.w.b.w">;
def CRC_W_H_W : ALU_3R<0b00000000001001001, "crc.w.h.w">;
def CRC_W_W_W : ALU_3R<0b00000000001001010, "crc.w.w.w">;
def CRC_W_D_W : ALU_3R<0b00000000001001011, "crc.w.d.w">;
def CRCC_W_B_W : ALU_3R<0b00000000001001100, "crcc.w.b.w">;
def CRCC_W_H_W : ALU_3R<0b00000000001001101, "crcc.w.h.w">;
def CRCC_W_W_W : ALU_3R<0b00000000001001110, "crcc.w.w.w">;
def CRCC_W_D_W : ALU_3R<0b00000000001001111, "crcc.w.d.w">;
// Other Miscellaneous Instructions for 64-bits
def ASRTLE_D : FmtASRT<0b00000000000000010, (outs), (ins GPR:$rj, GPR:$rk),
"asrtle.d", "$rj, $rk">;
def ASRTGT_D : FmtASRT<0b00000000000000011, (outs), (ins GPR:$rj, GPR:$rk),
"asrtgt.d", "$rj, $rk">;
def RDTIME_D : RDTIME_2R<0b0000000000000000011010, "rdtime.d">;
} // Predicates = [IsLA64]
//===----------------------------------------------------------------------===//
// Pseudo-instructions and codegen patterns
//
// Naming convention: For 'generic' pattern classes, we use the naming
// convention PatTy1Ty2.
//===----------------------------------------------------------------------===//
/// Generic pattern classes
class PatGprGpr<SDPatternOperator OpNode, LAInst Inst>
: Pat<(OpNode GPR:$rj, GPR:$rk), (Inst GPR:$rj, GPR:$rk)>;
class PatGprGpr_32<SDPatternOperator OpNode, LAInst Inst>
: Pat<(sext_inreg (OpNode GPR:$rj, GPR:$rk), i32), (Inst GPR:$rj, GPR:$rk)>;
class PatGprImm<SDPatternOperator OpNode, LAInst Inst, Operand ImmOpnd>
: Pat<(OpNode GPR:$rj, ImmOpnd:$imm),
(Inst GPR:$rj, ImmOpnd:$imm)>;
class PatGprImm_32<SDPatternOperator OpNode, LAInst Inst, Operand ImmOpnd>
: Pat<(sext_inreg (OpNode GPR:$rj, ImmOpnd:$imm), i32),
(Inst GPR:$rj, ImmOpnd:$imm)>;
/// Simple arithmetic operations
// Match both a plain shift and one where the shift amount is masked (this is
// typically introduced when the legalizer promotes the shift amount and
// zero-extends it). For LoongArch, the mask is unnecessary as shifts in the
// base ISA only read the least significant 5 bits (LA32) or 6 bits (LA64).
def shiftMaskGRLen
: ComplexPattern<GRLenVT, 1, "selectShiftMaskGRLen", [], [], 0>;
def shiftMask32 : ComplexPattern<i64, 1, "selectShiftMask32", [], [], 0>;
def sexti32 : ComplexPattern<i64, 1, "selectSExti32">;
def zexti32 : ComplexPattern<i64, 1, "selectZExti32">;
class shiftop<SDPatternOperator operator>
: PatFrag<(ops node:$val, node:$count),
(operator node:$val, (GRLenVT (shiftMaskGRLen node:$count)))>;
class shiftopw<SDPatternOperator operator>
: PatFrag<(ops node:$val, node:$count),
(operator node:$val, (i64 (shiftMask32 node:$count)))>;
let Predicates = [IsLA32] in {
def : PatGprGpr<add, ADD_W>;
def : PatGprImm<add, ADDI_W, simm12>;
def : PatGprGpr<sub, SUB_W>;
def : PatGprGpr<sdiv, DIV_W>;
def : PatGprGpr<udiv, DIV_WU>;
def : PatGprGpr<srem, MOD_W>;
def : PatGprGpr<urem, MOD_WU>;
def : PatGprGpr<mul, MUL_W>;
def : PatGprGpr<mulhs, MULH_W>;
def : PatGprGpr<mulhu, MULH_WU>;
} // Predicates = [IsLA32]
let Predicates = [IsLA64] in {
def : PatGprGpr<add, ADD_D>;
def : PatGprGpr_32<add, ADD_W>;
def : PatGprImm<add, ADDI_D, simm12>;
def : PatGprImm_32<add, ADDI_W, simm12>;
def : PatGprGpr<sub, SUB_D>;
def : PatGprGpr_32<sub, SUB_W>;
def : PatGprGpr<sdiv, DIV_D>;
def : PatGprGpr<udiv, DIV_DU>;
def : PatGprGpr<srem, MOD_D>;
def : PatGprGpr<urem, MOD_DU>;
// TODO: Select "_W[U]" instructions for i32xi32 if only lower 32 bits of the
// product are used.
def : PatGprGpr<mul, MUL_D>;
def : PatGprGpr<mulhs, MULH_D>;
def : PatGprGpr<mulhu, MULH_DU>;
// Select MULW_D_W for calculating the full 64 bits product of i32xi32 signed
// multiplication.
def : Pat<(i64 (mul (sext_inreg GPR:$rj, i32), (sext_inreg GPR:$rk, i32))),
(MULW_D_W GPR:$rj, GPR:$rk)>;
// Select MULW_D_WU for calculating the full 64 bits product of i32xi32
// unsigned multiplication.
def : Pat<(i64 (mul (loongarch_bstrpick GPR:$rj, (i64 31), (i64 0)),
(loongarch_bstrpick GPR:$rk, (i64 31), (i64 0)))),
(MULW_D_WU GPR:$rj, GPR:$rk)>;
} // Predicates = [IsLA64]
def : PatGprGpr<and, AND>;
def : PatGprImm<and, ANDI, uimm12>;
def : PatGprGpr<or, OR>;
def : PatGprImm<or, ORI, uimm12>;
def : PatGprGpr<xor, XOR>;
def : PatGprImm<xor, XORI, uimm12>;
/// Shift
let Predicates = [IsLA32] in {
def : PatGprGpr<shiftop<shl>, SLL_W>;
def : PatGprGpr<shiftop<sra>, SRA_W>;
def : PatGprGpr<shiftop<srl>, SRL_W>;
def : PatGprImm<shl, SLLI_W, uimm5>;
def : PatGprImm<sra, SRAI_W, uimm5>;
def : PatGprImm<srl, SRLI_W, uimm5>;
} // Predicates = [IsLA32]
let Predicates = [IsLA64] in {
def : PatGprGpr<shiftopw<loongarch_sll_w>, SLL_W>;
def : PatGprGpr<shiftopw<loongarch_sra_w>, SRA_W>;
def : PatGprGpr<shiftopw<loongarch_srl_w>, SRL_W>;
def : PatGprGpr<shiftop<shl>, SLL_D>;
def : PatGprGpr<shiftop<sra>, SRA_D>;
def : PatGprGpr<shiftop<srl>, SRL_D>;
def : PatGprImm<shl, SLLI_D, uimm6>;
def : PatGprImm<sra, SRAI_D, uimm6>;
def : PatGprImm<srl, SRLI_D, uimm6>;
} // Predicates = [IsLA64]
/// sext and zext
def : Pat<(sext_inreg GPR:$rj, i8), (EXT_W_B GPR:$rj)>;
def : Pat<(sext_inreg GPR:$rj, i16), (EXT_W_H GPR:$rj)>;
let Predicates = [IsLA64] in {
def : Pat<(sext_inreg GPR:$rj, i32), (ADDI_W GPR:$rj, 0)>;
} // Predicates = [IsLA64]
/// Setcc
def : PatGprGpr<setlt, SLT>;
def : PatGprImm<setlt, SLTI, simm12>;
def : PatGprGpr<setult, SLTU>;
def : PatGprImm<setult, SLTUI, simm12>;
// Define pattern expansions for setcc operations that aren't directly
// handled by a LoongArch instruction.
def : Pat<(seteq GPR:$rj, 0), (SLTUI GPR:$rj, 1)>;
def : Pat<(seteq GPR:$rj, GPR:$rk), (SLTUI (XOR GPR:$rj, GPR:$rk), 1)>;
let Predicates = [IsLA32] in {
def : Pat<(seteq GPR:$rj, simm12_plus1:$imm12),
(SLTUI (ADDI_W GPR:$rj, (NegImm simm12_plus1:$imm12)), 1)>;
} // Predicates = [IsLA32]
let Predicates = [IsLA64] in {
def : Pat<(seteq GPR:$rj, simm12_plus1:$imm12),
(SLTUI (ADDI_D GPR:$rj, (NegImm simm12_plus1:$imm12)), 1)>;
} // Predicates = [IsLA64]
def : Pat<(setne GPR:$rj, 0), (SLTU R0, GPR:$rj)>;
def : Pat<(setne GPR:$rj, GPR:$rk), (SLTU R0, (XOR GPR:$rj, GPR:$rk))>;
let Predicates = [IsLA32] in {
def : Pat<(setne GPR:$rj, simm12_plus1:$imm12),
(SLTU R0, (ADDI_W GPR:$rj, (NegImm simm12_plus1:$imm12)))>;
} // Predicates = [IsLA32]
let Predicates = [IsLA64] in {
def : Pat<(setne GPR:$rj, simm12_plus1:$imm12),
(SLTU R0, (ADDI_D GPR:$rj, (NegImm simm12_plus1:$imm12)))>;
} // Predicates = [IsLA64]
def : Pat<(setugt GPR:$rj, GPR:$rk), (SLTU GPR:$rk, GPR:$rj)>;
def : Pat<(setuge GPR:$rj, GPR:$rk), (XORI (SLTU GPR:$rj, GPR:$rk), 1)>;
def : Pat<(setule GPR:$rj, GPR:$rk), (XORI (SLTU GPR:$rk, GPR:$rj), 1)>;
def : Pat<(setgt GPR:$rj, GPR:$rk), (SLT GPR:$rk, GPR:$rj)>;
def : Pat<(setge GPR:$rj, GPR:$rk), (XORI (SLT GPR:$rj, GPR:$rk), 1)>;
def : Pat<(setle GPR:$rj, GPR:$rk), (XORI (SLT GPR:$rk, GPR:$rj), 1)>;
/// Select
def : Pat<(select GPR:$cond, GPR:$t, GPR:$f),
(OR (MASKEQZ GPR:$t, GPR:$cond), (MASKNEZ GPR:$f, GPR:$cond))>;
/// Branches and jumps
class BccPat<PatFrag CondOp, LAInst Inst>
: Pat<(brcond (GRLenVT (CondOp GPR:$rj, GPR:$rd)), bb:$imm16),
(Inst GPR:$rj, GPR:$rd, bb:$imm16)>;
def : BccPat<seteq, BEQ>;
def : BccPat<setne, BNE>;
def : BccPat<setlt, BLT>;
def : BccPat<setge, BGE>;
def : BccPat<setult, BLTU>;
def : BccPat<setuge, BGEU>;
class BccSwapPat<PatFrag CondOp, LAInst InstBcc>
: Pat<(brcond (GRLenVT (CondOp GPR:$rd, GPR:$rj)), bb:$imm16),
(InstBcc GPR:$rj, GPR:$rd, bb:$imm16)>;
// Condition codes that don't have matching LoongArch branch instructions, but
// are trivially supported by swapping the two input operands.
def : BccSwapPat<setgt, BLT>;
def : BccSwapPat<setle, BGE>;
def : BccSwapPat<setugt, BLTU>;
def : BccSwapPat<setule, BGEU>;
// An extra pattern is needed for a brcond without a setcc (i.e. where the
// condition was calculated elsewhere).
def : Pat<(brcond GPR:$rj, bb:$imm21), (BNEZ GPR:$rj, bb:$imm21)>;
let isBarrier = 1, isBranch = 1, isTerminator = 1 in
def PseudoBR : Pseudo<(outs), (ins simm26_lsl2:$imm26), [(br bb:$imm26)]>,
PseudoInstExpansion<(B simm26_lsl2:$imm26)>;
let isBarrier = 1, isBranch = 1, isIndirectBranch = 1, isTerminator = 1 in
def PseudoBRIND : Pseudo<(outs), (ins GPR:$rj, simm16_lsl2:$imm16), []>,
PseudoInstExpansion<(JIRL R0, GPR:$rj, simm16_lsl2:$imm16)>;
def : Pat<(brind GPR:$rj), (PseudoBRIND GPR:$rj, 0)>;
def : Pat<(brind (add GPR:$rj, simm16_lsl2:$imm16)),
(PseudoBRIND GPR:$rj, simm16_lsl2:$imm16)>;
let isCall = 1, Defs = [R1] in
def PseudoCALL : Pseudo<(outs), (ins call_symbol:$func), []> {
let AsmString = "bl\t$func";
}
def : Pat<(loongarch_call tglobaladdr:$func), (PseudoCALL tglobaladdr:$func)>;
def : Pat<(loongarch_call texternalsym:$func), (PseudoCALL texternalsym:$func)>;
let isCall = 1, Defs = [R1] in
def PseudoCALLIndirect : Pseudo<(outs), (ins GPR:$rj),
[(loongarch_call GPR:$rj)]>,
PseudoInstExpansion<(JIRL R1, GPR:$rj, 0)>;
let isBarrier = 1, isReturn = 1, isTerminator = 1 in
def PseudoRET : Pseudo<(outs), (ins), [(loongarch_ret)]>,
PseudoInstExpansion<(JIRL R0, R1, 0)>;
/// BSTRINS and BSTRPICK
let Predicates = [IsLA32] in {
def : Pat<(loongarch_bstrins GPR:$rd, GPR:$rj, uimm5:$msbd, uimm5:$lsbd),
(BSTRINS_W GPR:$rd, GPR:$rj, uimm5:$msbd, uimm5:$lsbd)>;
def : Pat<(loongarch_bstrpick GPR:$rj, uimm5:$msbd, uimm5:$lsbd),
(BSTRPICK_W GPR:$rj, uimm5:$msbd, uimm5:$lsbd)>;
} // Predicates = [IsLA32]
let Predicates = [IsLA64] in {
def : Pat<(loongarch_bstrins GPR:$rd, GPR:$rj, uimm6:$msbd, uimm6:$lsbd),
(BSTRINS_D GPR:$rd, GPR:$rj, uimm6:$msbd, uimm6:$lsbd)>;
def : Pat<(loongarch_bstrpick GPR:$rj, uimm6:$msbd, uimm6:$lsbd),
(BSTRPICK_D GPR:$rj, uimm6:$msbd, uimm6:$lsbd)>;
} // Predicates = [IsLA64]
/// Loads
multiclass LdPat<PatFrag LoadOp, LAInst Inst, ValueType vt = GRLenVT> {
def : Pat<(vt (LoadOp BaseAddr:$rj)), (Inst BaseAddr:$rj, 0)>;
def : Pat<(vt (LoadOp (add BaseAddr:$rj, simm12:$imm12))),
(Inst BaseAddr:$rj, simm12:$imm12)>;
}
defm : LdPat<sextloadi8, LD_B>;
defm : LdPat<extloadi8, LD_B>;
defm : LdPat<sextloadi16, LD_H>;
defm : LdPat<extloadi16, LD_H>;
defm : LdPat<load, LD_W>, Requires<[IsLA32]>;
defm : LdPat<zextloadi8, LD_BU>;
defm : LdPat<zextloadi16, LD_HU>;
let Predicates = [IsLA64] in {
defm : LdPat<sextloadi32, LD_W, i64>;
defm : LdPat<extloadi32, LD_W, i64>;
defm : LdPat<zextloadi32, LD_WU, i64>;
defm : LdPat<load, LD_D, i64>;
} // Predicates = [IsLA64]
/// Stores
multiclass StPat<PatFrag StoreOp, LAInst Inst, RegisterClass StTy,
ValueType vt> {
def : Pat<(StoreOp (vt StTy:$rd), BaseAddr:$rj),
(Inst StTy:$rd, BaseAddr:$rj, 0)>;
def : Pat<(StoreOp (vt StTy:$rd), (add BaseAddr:$rj, simm12:$imm12)),
(Inst StTy:$rd, BaseAddr:$rj, simm12:$imm12)>;
}
defm : StPat<truncstorei8, ST_B, GPR, GRLenVT>;
defm : StPat<truncstorei16, ST_H, GPR, GRLenVT>;
defm : StPat<store, ST_W, GPR, i32>, Requires<[IsLA32]>;
let Predicates = [IsLA64] in {
defm : StPat<truncstorei32, ST_W, GPR, i64>;
defm : StPat<store, ST_D, GPR, i64>;
} // Predicates = [IsLA64]
/// Atomic loads and stores
def : Pat<(atomic_fence timm, timm), (DBAR 0)>;
defm : LdPat<atomic_load_8, LD_B>;
defm : LdPat<atomic_load_16, LD_H>;
defm : LdPat<atomic_load_32, LD_W>;
defm : StPat<atomic_store_8, ST_B, GPR, GRLenVT>;
defm : StPat<atomic_store_16, ST_H, GPR, GRLenVT>;
defm : StPat<atomic_store_32, ST_W, GPR, i32>, Requires<[IsLA32]>;
let Predicates = [IsLA64] in {
defm : LdPat<atomic_load_64, LD_D>;
defm : StPat<atomic_store_32, ST_W, GPR, i64>;
defm : StPat<atomic_store_64, ST_D, GPR, i64>;
} // Predicates = [IsLA64]
/// Other pseudo-instructions
// Pessimistically assume the stack pointer will be clobbered
let Defs = [R3], Uses = [R3] in {
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
[(callseq_start timm:$amt1, timm:$amt2)]>;
def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
[(callseq_end timm:$amt1, timm:$amt2)]>;
} // Defs = [R3], Uses = [R3]
//===----------------------------------------------------------------------===//
// Assembler Pseudo Instructions
//===----------------------------------------------------------------------===//
def : InstAlias<"nop", (ANDI R0, R0, 0)>;
def : InstAlias<"move $dst, $src", (OR GPR:$dst, GPR:$src, R0)>;
//===----------------------------------------------------------------------===//
// Basic Floating-Point Instructions
//===----------------------------------------------------------------------===//
include "LoongArchFloat32InstrInfo.td"
include "LoongArchFloat64InstrInfo.td"
//===----------------------------------------------------------------------===//
// Privilege Instructions
//===----------------------------------------------------------------------===//
// CSR Access Instructions
def CSRRD : FmtCSR<0b0000010000000, (outs GPR:$rd), (ins uimm14:$csr_num),
"csrrd", "$rd, $csr_num">;
let Constraints = "$rd = $dst" in {
def CSRWR : FmtCSR<0b0000010000001, (outs GPR:$dst),
(ins GPR:$rd, uimm14:$csr_num), "csrwr", "$rd, $csr_num">;
def CSRXCHG : FmtCSRXCHG<0b00000100, (outs GPR:$dst),
(ins GPR:$rd, GPR:$rj, uimm14:$csr_num),
"csrxchg", "$rd, $rj, $csr_num">;
} // Constraints = "$rd = $dst"
// IOCSR Access Instructions
def IOCSRRD_B : IOCSRRD<0b0000011001001000000000, "iocsrrd.b">;
def IOCSRRD_H : IOCSRRD<0b0000011001001000000001, "iocsrrd.h">;
def IOCSRRD_W : IOCSRRD<0b0000011001001000000010, "iocsrrd.w">;
def IOCSRWR_B : IOCSRWR<0b0000011001001000000100, "iocsrwr.b">;
def IOCSRWR_H : IOCSRWR<0b0000011001001000000101, "iocsrwr.h">;
def IOCSRWR_W : IOCSRWR<0b0000011001001000000110, "iocsrwr.w">;
let Predicates = [IsLA64] in {
def IOCSRRD_D : IOCSRRD<0b0000011001001000000011, "iocsrrd.d">;
def IOCSRWR_D : IOCSRWR<0b0000011001001000000111, "iocsrwr.d">;
} // Predicates = [IsLA64]
// Cache Maintenance Instructions
def CACOP : FmtCACOP<(outs), (ins uimm5:$op, GPR:$rj, simm12:$imm12), "cacop",
"$op, $rj, $imm12">;
// TLB Maintenance Instructions
def TLBSRCH : FmtI32<0b00000110010010000010100000000000, "tlbsrch">;
def TLBRD : FmtI32<0b00000110010010000010110000000000, "tlbrd">;
def TLBWR : FmtI32<0b00000110010010000011000000000000, "tlbwr">;
def TLBFILL : FmtI32<0b00000110010010000011010000000000, "tlbfill">;
def TLBCLR : FmtI32<0b00000110010010000010000000000000, "tlbclr">;
def TLBFLUSH : FmtI32<0b00000110010010000010010000000000, "tlbflush">;
def INVTLB : FmtINVTLB<(outs), (ins GPR:$rk, GPR:$rj, uimm5:$op), "invtlb",
"$op, $rj, $rk">;
// Software Page Walking Instructions
def LDDIR : Fmt2RI8<0b00000110010000, (outs GPR:$rd),
(ins GPR:$rj, uimm8:$imm8), "lddir", "$rd, $rj, $imm8">;
def LDPTE : FmtLDPTE<(outs), (ins GPR:$rj, uimm8:$seq), "ldpte", "$rj, $seq">;
// Other Miscellaneous Instructions
def ERTN : FmtI32<0b00000110010010000011100000000000, "ertn">;
def DBCL : MISC_I15<0b00000000001010101, "dbcl">;
def IDLE : MISC_I15<0b00000110010010001, "idle">;
|