1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
|
//===-- RISCVRegisterInfo.cpp - RISCV Register Information ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the RISCV implementation of the TargetRegisterInfo class.
//
//===----------------------------------------------------------------------===//
#include "RISCVRegisterInfo.h"
#include "RISCV.h"
#include "RISCVMachineFunctionInfo.h"
#include "RISCVSubtarget.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/Support/ErrorHandling.h"
#define GET_REGINFO_TARGET_DESC
#include "RISCVGenRegisterInfo.inc"
using namespace llvm;
static_assert(RISCV::X1 == RISCV::X0 + 1, "Register list not consecutive");
static_assert(RISCV::X31 == RISCV::X0 + 31, "Register list not consecutive");
static_assert(RISCV::F1_H == RISCV::F0_H + 1, "Register list not consecutive");
static_assert(RISCV::F31_H == RISCV::F0_H + 31,
"Register list not consecutive");
static_assert(RISCV::F1_F == RISCV::F0_F + 1, "Register list not consecutive");
static_assert(RISCV::F31_F == RISCV::F0_F + 31,
"Register list not consecutive");
static_assert(RISCV::F1_D == RISCV::F0_D + 1, "Register list not consecutive");
static_assert(RISCV::F31_D == RISCV::F0_D + 31,
"Register list not consecutive");
static_assert(RISCV::V1 == RISCV::V0 + 1, "Register list not consecutive");
static_assert(RISCV::V31 == RISCV::V0 + 31, "Register list not consecutive");
RISCVRegisterInfo::RISCVRegisterInfo(unsigned HwMode)
: RISCVGenRegisterInfo(RISCV::X1, /*DwarfFlavour*/0, /*EHFlavor*/0,
/*PC*/0, HwMode) {}
const MCPhysReg *
RISCVRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
auto &Subtarget = MF->getSubtarget<RISCVSubtarget>();
if (MF->getFunction().getCallingConv() == CallingConv::GHC)
return CSR_NoRegs_SaveList;
if (MF->getFunction().hasFnAttribute("interrupt")) {
if (Subtarget.hasStdExtD())
return CSR_XLEN_F64_Interrupt_SaveList;
if (Subtarget.hasStdExtF())
return CSR_XLEN_F32_Interrupt_SaveList;
return CSR_Interrupt_SaveList;
}
switch (Subtarget.getTargetABI()) {
default:
llvm_unreachable("Unrecognized ABI");
case RISCVABI::ABI_ILP32:
case RISCVABI::ABI_LP64:
return CSR_ILP32_LP64_SaveList;
case RISCVABI::ABI_ILP32F:
case RISCVABI::ABI_LP64F:
return CSR_ILP32F_LP64F_SaveList;
case RISCVABI::ABI_ILP32D:
case RISCVABI::ABI_LP64D:
return CSR_ILP32D_LP64D_SaveList;
}
}
BitVector RISCVRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
const RISCVFrameLowering *TFI = getFrameLowering(MF);
BitVector Reserved(getNumRegs());
// Mark any registers requested to be reserved as such
for (size_t Reg = 0; Reg < getNumRegs(); Reg++) {
if (MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(Reg))
markSuperRegs(Reserved, Reg);
}
// Use markSuperRegs to ensure any register aliases are also reserved
markSuperRegs(Reserved, RISCV::X0); // zero
markSuperRegs(Reserved, RISCV::X2); // sp
markSuperRegs(Reserved, RISCV::X3); // gp
markSuperRegs(Reserved, RISCV::X4); // tp
if (TFI->hasFP(MF))
markSuperRegs(Reserved, RISCV::X8); // fp
// Reserve the base register if we need to realign the stack and allocate
// variable-sized objects at runtime.
if (TFI->hasBP(MF))
markSuperRegs(Reserved, RISCVABI::getBPReg()); // bp
// V registers for code generation. We handle them manually.
markSuperRegs(Reserved, RISCV::VL);
markSuperRegs(Reserved, RISCV::VTYPE);
markSuperRegs(Reserved, RISCV::VXSAT);
markSuperRegs(Reserved, RISCV::VXRM);
markSuperRegs(Reserved, RISCV::VLENB); // vlenb (constant)
// Floating point environment registers.
markSuperRegs(Reserved, RISCV::FRM);
markSuperRegs(Reserved, RISCV::FFLAGS);
assert(checkAllSuperRegsMarked(Reserved));
return Reserved;
}
bool RISCVRegisterInfo::isAsmClobberable(const MachineFunction &MF,
MCRegister PhysReg) const {
return !MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(PhysReg);
}
bool RISCVRegisterInfo::isConstantPhysReg(MCRegister PhysReg) const {
return PhysReg == RISCV::X0 || PhysReg == RISCV::VLENB;
}
const uint32_t *RISCVRegisterInfo::getNoPreservedMask() const {
return CSR_NoRegs_RegMask;
}
// Frame indexes representing locations of CSRs which are given a fixed location
// by save/restore libcalls.
static const std::pair<unsigned, int> FixedCSRFIMap[] = {
{/*ra*/ RISCV::X1, -1},
{/*s0*/ RISCV::X8, -2},
{/*s1*/ RISCV::X9, -3},
{/*s2*/ RISCV::X18, -4},
{/*s3*/ RISCV::X19, -5},
{/*s4*/ RISCV::X20, -6},
{/*s5*/ RISCV::X21, -7},
{/*s6*/ RISCV::X22, -8},
{/*s7*/ RISCV::X23, -9},
{/*s8*/ RISCV::X24, -10},
{/*s9*/ RISCV::X25, -11},
{/*s10*/ RISCV::X26, -12},
{/*s11*/ RISCV::X27, -13}
};
bool RISCVRegisterInfo::hasReservedSpillSlot(const MachineFunction &MF,
Register Reg,
int &FrameIdx) const {
const auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
if (!RVFI->useSaveRestoreLibCalls(MF))
return false;
const auto *FII =
llvm::find_if(FixedCSRFIMap, [&](auto P) { return P.first == Reg; });
if (FII == std::end(FixedCSRFIMap))
return false;
FrameIdx = FII->second;
return true;
}
void RISCVRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
int SPAdj, unsigned FIOperandNum,
RegScavenger *RS) const {
assert(SPAdj == 0 && "Unexpected non-zero SPAdj value");
MachineInstr &MI = *II;
MachineFunction &MF = *MI.getParent()->getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
const RISCVInstrInfo *TII = MF.getSubtarget<RISCVSubtarget>().getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
Register FrameReg;
StackOffset Offset =
getFrameLowering(MF)->getFrameIndexReference(MF, FrameIndex, FrameReg);
bool IsRVVSpill = RISCV::isRVVSpill(MI);
if (!IsRVVSpill)
Offset += StackOffset::getFixed(MI.getOperand(FIOperandNum + 1).getImm());
if (!isInt<32>(Offset.getFixed())) {
report_fatal_error(
"Frame offsets outside of the signed 32-bit range not supported");
}
MachineBasicBlock &MBB = *MI.getParent();
bool FrameRegIsKill = false;
// If required, pre-compute the scalable factor amount which will be used in
// later offset computation. Since this sequence requires up to two scratch
// registers -- after which one is made free -- this grants us better
// scavenging of scratch registers as only up to two are live at one time,
// rather than three.
Register ScalableFactorRegister;
unsigned ScalableAdjOpc = RISCV::ADD;
if (Offset.getScalable()) {
int64_t ScalableValue = Offset.getScalable();
if (ScalableValue < 0) {
ScalableValue = -ScalableValue;
ScalableAdjOpc = RISCV::SUB;
}
// 1. Get vlenb && multiply vlen with the number of vector registers.
ScalableFactorRegister =
TII->getVLENFactoredAmount(MF, MBB, II, DL, ScalableValue);
}
if (!isInt<12>(Offset.getFixed())) {
// The offset won't fit in an immediate, so use a scratch register instead
// Modify Offset and FrameReg appropriately
Register ScratchReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
TII->movImm(MBB, II, DL, ScratchReg, Offset.getFixed());
if (MI.getOpcode() == RISCV::ADDI && !Offset.getScalable()) {
BuildMI(MBB, II, DL, TII->get(RISCV::ADD), MI.getOperand(0).getReg())
.addReg(FrameReg)
.addReg(ScratchReg, RegState::Kill);
MI.eraseFromParent();
return;
}
BuildMI(MBB, II, DL, TII->get(RISCV::ADD), ScratchReg)
.addReg(FrameReg)
.addReg(ScratchReg, RegState::Kill);
Offset = StackOffset::get(0, Offset.getScalable());
FrameReg = ScratchReg;
FrameRegIsKill = true;
}
if (!Offset.getScalable()) {
// Offset = (fixed offset, 0)
MI.getOperand(FIOperandNum)
.ChangeToRegister(FrameReg, false, false, FrameRegIsKill);
if (!IsRVVSpill)
MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset.getFixed());
else {
if (Offset.getFixed()) {
Register ScratchReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
BuildMI(MBB, II, DL, TII->get(RISCV::ADDI), ScratchReg)
.addReg(FrameReg, getKillRegState(FrameRegIsKill))
.addImm(Offset.getFixed());
MI.getOperand(FIOperandNum)
.ChangeToRegister(ScratchReg, false, false, true);
}
}
} else {
// Offset = (fixed offset, scalable offset)
// Step 1, the scalable offset, has already been computed.
assert(ScalableFactorRegister &&
"Expected pre-computation of scalable factor in earlier step");
// 2. Calculate address: FrameReg + result of multiply
if (MI.getOpcode() == RISCV::ADDI && !Offset.getFixed()) {
BuildMI(MBB, II, DL, TII->get(ScalableAdjOpc), MI.getOperand(0).getReg())
.addReg(FrameReg, getKillRegState(FrameRegIsKill))
.addReg(ScalableFactorRegister, RegState::Kill);
MI.eraseFromParent();
return;
}
Register VL = MRI.createVirtualRegister(&RISCV::GPRRegClass);
BuildMI(MBB, II, DL, TII->get(ScalableAdjOpc), VL)
.addReg(FrameReg, getKillRegState(FrameRegIsKill))
.addReg(ScalableFactorRegister, RegState::Kill);
if (IsRVVSpill && Offset.getFixed()) {
// Scalable load/store has no immediate argument. We need to add the
// fixed part into the load/store base address.
BuildMI(MBB, II, DL, TII->get(RISCV::ADDI), VL)
.addReg(VL)
.addImm(Offset.getFixed());
}
// 3. Replace address register with calculated address register
MI.getOperand(FIOperandNum).ChangeToRegister(VL, false, false, true);
if (!IsRVVSpill)
MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset.getFixed());
}
auto ZvlssegInfo = RISCV::isRVVSpillForZvlsseg(MI.getOpcode());
if (ZvlssegInfo) {
Register VL = MRI.createVirtualRegister(&RISCV::GPRRegClass);
BuildMI(MBB, II, DL, TII->get(RISCV::PseudoReadVLENB), VL);
uint32_t ShiftAmount = Log2_32(ZvlssegInfo->second);
if (ShiftAmount != 0)
BuildMI(MBB, II, DL, TII->get(RISCV::SLLI), VL)
.addReg(VL)
.addImm(ShiftAmount);
// The last argument of pseudo spilling opcode for zvlsseg is the length of
// one element of zvlsseg types. For example, for vint32m2x2_t, it will be
// the length of vint32m2_t.
MI.getOperand(FIOperandNum + 1).ChangeToRegister(VL, /*isDef=*/false);
}
}
Register RISCVRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
const TargetFrameLowering *TFI = getFrameLowering(MF);
return TFI->hasFP(MF) ? RISCV::X8 : RISCV::X2;
}
const uint32_t *
RISCVRegisterInfo::getCallPreservedMask(const MachineFunction & MF,
CallingConv::ID CC) const {
auto &Subtarget = MF.getSubtarget<RISCVSubtarget>();
if (CC == CallingConv::GHC)
return CSR_NoRegs_RegMask;
switch (Subtarget.getTargetABI()) {
default:
llvm_unreachable("Unrecognized ABI");
case RISCVABI::ABI_ILP32:
case RISCVABI::ABI_LP64:
return CSR_ILP32_LP64_RegMask;
case RISCVABI::ABI_ILP32F:
case RISCVABI::ABI_LP64F:
return CSR_ILP32F_LP64F_RegMask;
case RISCVABI::ABI_ILP32D:
case RISCVABI::ABI_LP64D:
return CSR_ILP32D_LP64D_RegMask;
}
}
const TargetRegisterClass *
RISCVRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC,
const MachineFunction &) const {
if (RC == &RISCV::VMV0RegClass)
return &RISCV::VRRegClass;
return RC;
}
void RISCVRegisterInfo::getOffsetOpcodes(const StackOffset &Offset,
SmallVectorImpl<uint64_t> &Ops) const {
// VLENB is the length of a vector register in bytes. We use <vscale x 8 x i8>
// to represent one vector register. The dwarf offset is
// VLENB * scalable_offset / 8.
assert(Offset.getScalable() % 8 == 0 && "Invalid frame offset");
// Add fixed-sized offset using existing DIExpression interface.
DIExpression::appendOffset(Ops, Offset.getFixed());
unsigned VLENB = getDwarfRegNum(RISCV::VLENB, true);
int64_t VLENBSized = Offset.getScalable() / 8;
if (VLENBSized > 0) {
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(VLENBSized);
Ops.append({dwarf::DW_OP_bregx, VLENB, 0ULL});
Ops.push_back(dwarf::DW_OP_mul);
Ops.push_back(dwarf::DW_OP_plus);
} else if (VLENBSized < 0) {
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(-VLENBSized);
Ops.append({dwarf::DW_OP_bregx, VLENB, 0ULL});
Ops.push_back(dwarf::DW_OP_mul);
Ops.push_back(dwarf::DW_OP_minus);
}
}
unsigned
RISCVRegisterInfo::getRegisterCostTableIndex(const MachineFunction &MF) const {
return MF.getSubtarget<RISCVSubtarget>().hasStdExtC() ? 1 : 0;
}
|