1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
|
//===-- RISCVTargetTransformInfo.cpp - RISC-V specific TTI ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "RISCVTargetTransformInfo.h"
#include "MCTargetDesc/RISCVMatInt.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/CodeGen/TargetLowering.h"
#include <cmath>
using namespace llvm;
#define DEBUG_TYPE "riscvtti"
static cl::opt<unsigned> RVVRegisterWidthLMUL(
"riscv-v-register-bit-width-lmul",
cl::desc(
"The LMUL to use for getRegisterBitWidth queries. Affects LMUL used "
"by autovectorized code. Fractional LMULs are not supported."),
cl::init(1), cl::Hidden);
InstructionCost RISCVTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind) {
assert(Ty->isIntegerTy() &&
"getIntImmCost can only estimate cost of materialising integers");
// We have a Zero register, so 0 is always free.
if (Imm == 0)
return TTI::TCC_Free;
// Otherwise, we check how many instructions it will take to materialise.
const DataLayout &DL = getDataLayout();
return RISCVMatInt::getIntMatCost(Imm, DL.getTypeSizeInBits(Ty),
getST()->getFeatureBits());
}
InstructionCost RISCVTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind,
Instruction *Inst) {
assert(Ty->isIntegerTy() &&
"getIntImmCost can only estimate cost of materialising integers");
// We have a Zero register, so 0 is always free.
if (Imm == 0)
return TTI::TCC_Free;
// Some instructions in RISC-V can take a 12-bit immediate. Some of these are
// commutative, in others the immediate comes from a specific argument index.
bool Takes12BitImm = false;
unsigned ImmArgIdx = ~0U;
switch (Opcode) {
case Instruction::GetElementPtr:
// Never hoist any arguments to a GetElementPtr. CodeGenPrepare will
// split up large offsets in GEP into better parts than ConstantHoisting
// can.
return TTI::TCC_Free;
case Instruction::And:
// zext.h
if (Imm == UINT64_C(0xffff) && ST->hasStdExtZbb())
return TTI::TCC_Free;
// zext.w
if (Imm == UINT64_C(0xffffffff) && ST->hasStdExtZba())
return TTI::TCC_Free;
LLVM_FALLTHROUGH;
case Instruction::Add:
case Instruction::Or:
case Instruction::Xor:
case Instruction::Mul:
Takes12BitImm = true;
break;
case Instruction::Sub:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
Takes12BitImm = true;
ImmArgIdx = 1;
break;
default:
break;
}
if (Takes12BitImm) {
// Check immediate is the correct argument...
if (Instruction::isCommutative(Opcode) || Idx == ImmArgIdx) {
// ... and fits into the 12-bit immediate.
if (Imm.getMinSignedBits() <= 64 &&
getTLI()->isLegalAddImmediate(Imm.getSExtValue())) {
return TTI::TCC_Free;
}
}
// Otherwise, use the full materialisation cost.
return getIntImmCost(Imm, Ty, CostKind);
}
// By default, prevent hoisting.
return TTI::TCC_Free;
}
InstructionCost
RISCVTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind) {
// Prevent hoisting in unknown cases.
return TTI::TCC_Free;
}
TargetTransformInfo::PopcntSupportKind
RISCVTTIImpl::getPopcntSupport(unsigned TyWidth) {
assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
return ST->hasStdExtZbb() ? TTI::PSK_FastHardware : TTI::PSK_Software;
}
bool RISCVTTIImpl::shouldExpandReduction(const IntrinsicInst *II) const {
// Currently, the ExpandReductions pass can't expand scalable-vector
// reductions, but we still request expansion as RVV doesn't support certain
// reductions and the SelectionDAG can't legalize them either.
switch (II->getIntrinsicID()) {
default:
return false;
// These reductions have no equivalent in RVV
case Intrinsic::vector_reduce_mul:
case Intrinsic::vector_reduce_fmul:
return true;
}
}
Optional<unsigned> RISCVTTIImpl::getMaxVScale() const {
if (ST->hasVInstructions())
return ST->getRealMaxVLen() / RISCV::RVVBitsPerBlock;
return BaseT::getMaxVScale();
}
Optional<unsigned> RISCVTTIImpl::getVScaleForTuning() const {
if (ST->hasVInstructions())
return ST->getRealMinVLen() / RISCV::RVVBitsPerBlock;
return BaseT::getVScaleForTuning();
}
TypeSize
RISCVTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
unsigned LMUL = PowerOf2Floor(
std::max<unsigned>(std::min<unsigned>(RVVRegisterWidthLMUL, 8), 1));
switch (K) {
case TargetTransformInfo::RGK_Scalar:
return TypeSize::getFixed(ST->getXLen());
case TargetTransformInfo::RGK_FixedWidthVector:
return TypeSize::getFixed(
ST->useRVVForFixedLengthVectors() ? LMUL * ST->getRealMinVLen() : 0);
case TargetTransformInfo::RGK_ScalableVector:
return TypeSize::getScalable(
ST->hasVInstructions() ? LMUL * RISCV::RVVBitsPerBlock : 0);
}
llvm_unreachable("Unsupported register kind");
}
InstructionCost RISCVTTIImpl::getSpliceCost(VectorType *Tp, int Index) {
std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
unsigned Cost = 2; // vslidedown+vslideup.
// TODO: LMUL should increase cost.
// TODO: Multiplying by LT.first implies this legalizes into multiple copies
// of similar code, but I think we expand through memory.
return Cost * LT.first;
}
InstructionCost RISCVTTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
VectorType *Tp, ArrayRef<int> Mask,
int Index, VectorType *SubTp,
ArrayRef<const Value *> Args) {
if (isa<ScalableVectorType>(Tp)) {
std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
switch (Kind) {
default:
// Fallthrough to generic handling.
// TODO: Most of these cases will return getInvalid in generic code, and
// must be implemented here.
break;
case TTI::SK_Broadcast: {
return LT.first * 1;
}
case TTI::SK_Splice:
return getSpliceCost(Tp, Index);
case TTI::SK_Reverse:
// Most of the cost here is producing the vrgather index register
// Example sequence:
// csrr a0, vlenb
// srli a0, a0, 3
// addi a0, a0, -1
// vsetvli a1, zero, e8, mf8, ta, mu (ignored)
// vid.v v9
// vrsub.vx v10, v9, a0
// vrgather.vv v9, v8, v10
if (Tp->getElementType()->isIntegerTy(1))
// Mask operation additionally required extend and truncate
return LT.first * 9;
return LT.first * 6;
}
}
return BaseT::getShuffleCost(Kind, Tp, Mask, Index, SubTp);
}
InstructionCost
RISCVTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
unsigned AddressSpace,
TTI::TargetCostKind CostKind) {
if (!isa<ScalableVectorType>(Src))
return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
CostKind);
return getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind);
}
InstructionCost RISCVTTIImpl::getGatherScatterOpCost(
unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
if (CostKind != TTI::TCK_RecipThroughput)
return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
Alignment, CostKind, I);
if ((Opcode == Instruction::Load &&
!isLegalMaskedGather(DataTy, Align(Alignment))) ||
(Opcode == Instruction::Store &&
!isLegalMaskedScatter(DataTy, Align(Alignment))))
return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
Alignment, CostKind, I);
// Cost is proportional to the number of memory operations implied. For
// scalable vectors, we use an upper bound on that number since we don't
// know exactly what VL will be.
auto &VTy = *cast<VectorType>(DataTy);
InstructionCost MemOpCost = getMemoryOpCost(Opcode, VTy.getElementType(),
Alignment, 0, CostKind, I);
unsigned NumLoads = getMaxVLFor(&VTy);
return NumLoads * MemOpCost;
}
InstructionCost
RISCVTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
TTI::TargetCostKind CostKind) {
auto *RetTy = ICA.getReturnType();
switch (ICA.getID()) {
// TODO: add more intrinsic
case Intrinsic::experimental_stepvector: {
unsigned Cost = 1; // vid
auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
return Cost + (LT.first - 1);
}
default:
break;
}
return BaseT::getIntrinsicInstrCost(ICA, CostKind);
}
InstructionCost RISCVTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
Type *Src,
TTI::CastContextHint CCH,
TTI::TargetCostKind CostKind,
const Instruction *I) {
if (isa<VectorType>(Dst) && isa<VectorType>(Src)) {
// FIXME: Need to compute legalizing cost for illegal types.
if (!isTypeLegal(Src) || !isTypeLegal(Dst))
return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
// Skip if element size of Dst or Src is bigger than ELEN.
if (Src->getScalarSizeInBits() > ST->getELEN() ||
Dst->getScalarSizeInBits() > ST->getELEN())
return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
// FIXME: Need to consider vsetvli and lmul.
int PowDiff = (int)Log2_32(Dst->getScalarSizeInBits()) -
(int)Log2_32(Src->getScalarSizeInBits());
switch (ISD) {
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
return 1;
case ISD::TRUNCATE:
case ISD::FP_EXTEND:
case ISD::FP_ROUND:
// Counts of narrow/widen instructions.
return std::abs(PowDiff);
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
if (std::abs(PowDiff) <= 1)
return 1;
// Backend could lower (v[sz]ext i8 to double) to vfcvt(v[sz]ext.f8 i8),
// so it only need two conversion.
if (Src->isIntOrIntVectorTy())
return 2;
// Counts of narrow/widen instructions.
return std::abs(PowDiff);
}
}
return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
}
unsigned RISCVTTIImpl::getMaxVLFor(VectorType *Ty) {
if (isa<ScalableVectorType>(Ty)) {
const unsigned EltSize = DL.getTypeSizeInBits(Ty->getElementType());
const unsigned MinSize = DL.getTypeSizeInBits(Ty).getKnownMinValue();
const unsigned VectorBitsMax = ST->getRealMaxVLen();
return RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
}
return cast<FixedVectorType>(Ty)->getNumElements();
}
InstructionCost
RISCVTTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
bool IsUnsigned,
TTI::TargetCostKind CostKind) {
if (isa<FixedVectorType>(Ty) && !ST->useRVVForFixedLengthVectors())
return BaseT::getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind);
// Skip if scalar size of Ty is bigger than ELEN.
if (Ty->getScalarSizeInBits() > ST->getELEN())
return BaseT::getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind);
std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
if (Ty->getElementType()->isIntegerTy(1))
// vcpop sequences, see vreduction-mask.ll. umax, smin actually only
// cost 2, but we don't have enough info here so we slightly over cost.
return (LT.first - 1) + 3;
// IR Reduction is composed by two vmv and one rvv reduction instruction.
InstructionCost BaseCost = 2;
unsigned VL = getMaxVLFor(Ty);
return (LT.first - 1) + BaseCost + Log2_32_Ceil(VL);
}
InstructionCost
RISCVTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
Optional<FastMathFlags> FMF,
TTI::TargetCostKind CostKind) {
if (isa<FixedVectorType>(Ty) && !ST->useRVVForFixedLengthVectors())
return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
// Skip if scalar size of Ty is bigger than ELEN.
if (Ty->getScalarSizeInBits() > ST->getELEN())
return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
if (ISD != ISD::ADD && ISD != ISD::OR && ISD != ISD::XOR && ISD != ISD::AND &&
ISD != ISD::FADD)
return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
if (Ty->getElementType()->isIntegerTy(1))
// vcpop sequences, see vreduction-mask.ll
return (LT.first - 1) + (ISD == ISD::AND ? 3 : 2);
// IR Reduction is composed by two vmv and one rvv reduction instruction.
InstructionCost BaseCost = 2;
unsigned VL = getMaxVLFor(Ty);
if (TTI::requiresOrderedReduction(FMF))
return (LT.first - 1) + BaseCost + VL;
return (LT.first - 1) + BaseCost + Log2_32_Ceil(VL);
}
void RISCVTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
TTI::UnrollingPreferences &UP,
OptimizationRemarkEmitter *ORE) {
// TODO: More tuning on benchmarks and metrics with changes as needed
// would apply to all settings below to enable performance.
if (ST->enableDefaultUnroll())
return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP, ORE);
// Enable Upper bound unrolling universally, not dependant upon the conditions
// below.
UP.UpperBound = true;
// Disable loop unrolling for Oz and Os.
UP.OptSizeThreshold = 0;
UP.PartialOptSizeThreshold = 0;
if (L->getHeader()->getParent()->hasOptSize())
return;
SmallVector<BasicBlock *, 4> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
LLVM_DEBUG(dbgs() << "Loop has:\n"
<< "Blocks: " << L->getNumBlocks() << "\n"
<< "Exit blocks: " << ExitingBlocks.size() << "\n");
// Only allow another exit other than the latch. This acts as an early exit
// as it mirrors the profitability calculation of the runtime unroller.
if (ExitingBlocks.size() > 2)
return;
// Limit the CFG of the loop body for targets with a branch predictor.
// Allowing 4 blocks permits if-then-else diamonds in the body.
if (L->getNumBlocks() > 4)
return;
// Don't unroll vectorized loops, including the remainder loop
if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
return;
// Scan the loop: don't unroll loops with calls as this could prevent
// inlining.
InstructionCost Cost = 0;
for (auto *BB : L->getBlocks()) {
for (auto &I : *BB) {
// Initial setting - Don't unroll loops containing vectorized
// instructions.
if (I.getType()->isVectorTy())
return;
if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
if (!isLoweredToCall(F))
continue;
}
return;
}
SmallVector<const Value *> Operands(I.operand_values());
Cost +=
getUserCost(&I, Operands, TargetTransformInfo::TCK_SizeAndLatency);
}
}
LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n");
UP.Partial = true;
UP.Runtime = true;
UP.UnrollRemainder = true;
UP.UnrollAndJam = true;
UP.UnrollAndJamInnerLoopThreshold = 60;
// Force unrolling small loops can be very useful because of the branch
// taken cost of the backedge.
if (Cost < 12)
UP.Force = true;
}
void RISCVTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
TTI::PeelingPreferences &PP) {
BaseT::getPeelingPreferences(L, SE, PP);
}
unsigned RISCVTTIImpl::getRegUsageForType(Type *Ty) {
TypeSize Size = Ty->getPrimitiveSizeInBits();
if (Ty->isVectorTy()) {
if (Size.isScalable() && ST->hasVInstructions())
return divideCeil(Size.getKnownMinValue(), RISCV::RVVBitsPerBlock);
if (ST->useRVVForFixedLengthVectors())
return divideCeil(Size, ST->getRealMinVLen());
}
return BaseT::getRegUsageForType(Ty);
}
|