File: SPIRVCallLowering.cpp

package info (click to toggle)
llvm-toolchain-15 1%3A15.0.6-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,554,644 kB
  • sloc: cpp: 5,922,452; ansic: 1,012,136; asm: 674,362; python: 191,568; objc: 73,855; f90: 42,327; lisp: 31,913; pascal: 11,973; javascript: 10,144; sh: 9,421; perl: 7,447; ml: 5,527; awk: 3,523; makefile: 2,520; xml: 885; cs: 573; fortran: 567
file content (328 lines) | stat: -rw-r--r-- 13,522 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
//===--- SPIRVCallLowering.cpp - Call lowering ------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the lowering of LLVM calls to machine code calls for
// GlobalISel.
//
//===----------------------------------------------------------------------===//

#include "SPIRVCallLowering.h"
#include "MCTargetDesc/SPIRVBaseInfo.h"
#include "SPIRV.h"
#include "SPIRVGlobalRegistry.h"
#include "SPIRVISelLowering.h"
#include "SPIRVRegisterInfo.h"
#include "SPIRVSubtarget.h"
#include "SPIRVUtils.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"

using namespace llvm;

SPIRVCallLowering::SPIRVCallLowering(const SPIRVTargetLowering &TLI,
                                     SPIRVGlobalRegistry *GR)
    : CallLowering(&TLI), GR(GR) {}

bool SPIRVCallLowering::lowerReturn(MachineIRBuilder &MIRBuilder,
                                    const Value *Val, ArrayRef<Register> VRegs,
                                    FunctionLoweringInfo &FLI,
                                    Register SwiftErrorVReg) const {
  // Currently all return types should use a single register.
  // TODO: handle the case of multiple registers.
  if (VRegs.size() > 1)
    return false;
  if (Val) {
    const auto &STI = MIRBuilder.getMF().getSubtarget();
    return MIRBuilder.buildInstr(SPIRV::OpReturnValue)
        .addUse(VRegs[0])
        .constrainAllUses(MIRBuilder.getTII(), *STI.getRegisterInfo(),
                          *STI.getRegBankInfo());
  }
  MIRBuilder.buildInstr(SPIRV::OpReturn);
  return true;
}

// Based on the LLVM function attributes, get a SPIR-V FunctionControl.
static uint32_t getFunctionControl(const Function &F) {
  uint32_t FuncControl = static_cast<uint32_t>(SPIRV::FunctionControl::None);
  if (F.hasFnAttribute(Attribute::AttrKind::AlwaysInline)) {
    FuncControl |= static_cast<uint32_t>(SPIRV::FunctionControl::Inline);
  }
  if (F.hasFnAttribute(Attribute::AttrKind::ReadNone)) {
    FuncControl |= static_cast<uint32_t>(SPIRV::FunctionControl::Pure);
  }
  if (F.hasFnAttribute(Attribute::AttrKind::ReadOnly)) {
    FuncControl |= static_cast<uint32_t>(SPIRV::FunctionControl::Const);
  }
  if (F.hasFnAttribute(Attribute::AttrKind::NoInline)) {
    FuncControl |= static_cast<uint32_t>(SPIRV::FunctionControl::DontInline);
  }
  return FuncControl;
}

static ConstantInt *getConstInt(MDNode *MD, unsigned NumOp) {
  if (MD->getNumOperands() > NumOp) {
    auto *CMeta = dyn_cast<ConstantAsMetadata>(MD->getOperand(NumOp));
    if (CMeta)
      return dyn_cast<ConstantInt>(CMeta->getValue());
  }
  return nullptr;
}

// This code restores function args/retvalue types for composite cases
// because the final types should still be aggregate whereas they're i32
// during the translation to cope with aggregate flattening etc.
static FunctionType *getOriginalFunctionType(const Function &F) {
  auto *NamedMD = F.getParent()->getNamedMetadata("spv.cloned_funcs");
  if (NamedMD == nullptr)
    return F.getFunctionType();

  Type *RetTy = F.getFunctionType()->getReturnType();
  SmallVector<Type *, 4> ArgTypes;
  for (auto &Arg : F.args())
    ArgTypes.push_back(Arg.getType());

  auto ThisFuncMDIt =
      std::find_if(NamedMD->op_begin(), NamedMD->op_end(), [&F](MDNode *N) {
        return isa<MDString>(N->getOperand(0)) &&
               cast<MDString>(N->getOperand(0))->getString() == F.getName();
      });
  // TODO: probably one function can have numerous type mutations,
  // so we should support this.
  if (ThisFuncMDIt != NamedMD->op_end()) {
    auto *ThisFuncMD = *ThisFuncMDIt;
    MDNode *MD = dyn_cast<MDNode>(ThisFuncMD->getOperand(1));
    assert(MD && "MDNode operand is expected");
    ConstantInt *Const = getConstInt(MD, 0);
    if (Const) {
      auto *CMeta = dyn_cast<ConstantAsMetadata>(MD->getOperand(1));
      assert(CMeta && "ConstantAsMetadata operand is expected");
      assert(Const->getSExtValue() >= -1);
      // Currently -1 indicates return value, greater values mean
      // argument numbers.
      if (Const->getSExtValue() == -1)
        RetTy = CMeta->getType();
      else
        ArgTypes[Const->getSExtValue()] = CMeta->getType();
    }
  }

  return FunctionType::get(RetTy, ArgTypes, F.isVarArg());
}

bool SPIRVCallLowering::lowerFormalArguments(MachineIRBuilder &MIRBuilder,
                                             const Function &F,
                                             ArrayRef<ArrayRef<Register>> VRegs,
                                             FunctionLoweringInfo &FLI) const {
  assert(GR && "Must initialize the SPIRV type registry before lowering args.");
  GR->setCurrentFunc(MIRBuilder.getMF());

  // Assign types and names to all args, and store their types for later.
  FunctionType *FTy = getOriginalFunctionType(F);
  SmallVector<SPIRVType *, 4> ArgTypeVRegs;
  if (VRegs.size() > 0) {
    unsigned i = 0;
    for (const auto &Arg : F.args()) {
      // Currently formal args should use single registers.
      // TODO: handle the case of multiple registers.
      if (VRegs[i].size() > 1)
        return false;
      Type *ArgTy = FTy->getParamType(i);
      SPIRV::AccessQualifier AQ = SPIRV::AccessQualifier::ReadWrite;
      MDNode *Node = F.getMetadata("kernel_arg_access_qual");
      if (Node && i < Node->getNumOperands()) {
        StringRef AQString = cast<MDString>(Node->getOperand(i))->getString();
        if (AQString.compare("read_only") == 0)
          AQ = SPIRV::AccessQualifier::ReadOnly;
        else if (AQString.compare("write_only") == 0)
          AQ = SPIRV::AccessQualifier::WriteOnly;
      }
      auto *SpirvTy = GR->assignTypeToVReg(ArgTy, VRegs[i][0], MIRBuilder, AQ);
      ArgTypeVRegs.push_back(SpirvTy);

      if (Arg.hasName())
        buildOpName(VRegs[i][0], Arg.getName(), MIRBuilder);
      if (Arg.getType()->isPointerTy()) {
        auto DerefBytes = static_cast<unsigned>(Arg.getDereferenceableBytes());
        if (DerefBytes != 0)
          buildOpDecorate(VRegs[i][0], MIRBuilder,
                          SPIRV::Decoration::MaxByteOffset, {DerefBytes});
      }
      if (Arg.hasAttribute(Attribute::Alignment)) {
        auto Alignment = static_cast<unsigned>(
            Arg.getAttribute(Attribute::Alignment).getValueAsInt());
        buildOpDecorate(VRegs[i][0], MIRBuilder, SPIRV::Decoration::Alignment,
                        {Alignment});
      }
      if (Arg.hasAttribute(Attribute::ReadOnly)) {
        auto Attr =
            static_cast<unsigned>(SPIRV::FunctionParameterAttribute::NoWrite);
        buildOpDecorate(VRegs[i][0], MIRBuilder,
                        SPIRV::Decoration::FuncParamAttr, {Attr});
      }
      if (Arg.hasAttribute(Attribute::ZExt)) {
        auto Attr =
            static_cast<unsigned>(SPIRV::FunctionParameterAttribute::Zext);
        buildOpDecorate(VRegs[i][0], MIRBuilder,
                        SPIRV::Decoration::FuncParamAttr, {Attr});
      }
      if (Arg.hasAttribute(Attribute::NoAlias)) {
        auto Attr =
            static_cast<unsigned>(SPIRV::FunctionParameterAttribute::NoAlias);
        buildOpDecorate(VRegs[i][0], MIRBuilder,
                        SPIRV::Decoration::FuncParamAttr, {Attr});
      }
      Node = F.getMetadata("kernel_arg_type_qual");
      if (Node && i < Node->getNumOperands()) {
        StringRef TypeQual = cast<MDString>(Node->getOperand(i))->getString();
        if (TypeQual.compare("volatile") == 0)
          buildOpDecorate(VRegs[i][0], MIRBuilder, SPIRV::Decoration::Volatile,
                          {});
      }
      Node = F.getMetadata("spirv.ParameterDecorations");
      if (Node && i < Node->getNumOperands() &&
          isa<MDNode>(Node->getOperand(i))) {
        MDNode *MD = cast<MDNode>(Node->getOperand(i));
        for (const MDOperand &MDOp : MD->operands()) {
          MDNode *MD2 = dyn_cast<MDNode>(MDOp);
          assert(MD2 && "Metadata operand is expected");
          ConstantInt *Const = getConstInt(MD2, 0);
          assert(Const && "MDOperand should be ConstantInt");
          auto Dec = static_cast<SPIRV::Decoration>(Const->getZExtValue());
          std::vector<uint32_t> DecVec;
          for (unsigned j = 1; j < MD2->getNumOperands(); j++) {
            ConstantInt *Const = getConstInt(MD2, j);
            assert(Const && "MDOperand should be ConstantInt");
            DecVec.push_back(static_cast<uint32_t>(Const->getZExtValue()));
          }
          buildOpDecorate(VRegs[i][0], MIRBuilder, Dec, DecVec);
        }
      }
      ++i;
    }
  }

  // Generate a SPIR-V type for the function.
  auto MRI = MIRBuilder.getMRI();
  Register FuncVReg = MRI->createGenericVirtualRegister(LLT::scalar(32));
  MRI->setRegClass(FuncVReg, &SPIRV::IDRegClass);
  if (F.isDeclaration())
    GR->add(&F, &MIRBuilder.getMF(), FuncVReg);
  SPIRVType *RetTy = GR->getOrCreateSPIRVType(FTy->getReturnType(), MIRBuilder);
  SPIRVType *FuncTy = GR->getOrCreateOpTypeFunctionWithArgs(
      FTy, RetTy, ArgTypeVRegs, MIRBuilder);

  // Build the OpTypeFunction declaring it.
  uint32_t FuncControl = getFunctionControl(F);

  MIRBuilder.buildInstr(SPIRV::OpFunction)
      .addDef(FuncVReg)
      .addUse(GR->getSPIRVTypeID(RetTy))
      .addImm(FuncControl)
      .addUse(GR->getSPIRVTypeID(FuncTy));

  // Add OpFunctionParameters.
  int i = 0;
  for (const auto &Arg : F.args()) {
    assert(VRegs[i].size() == 1 && "Formal arg has multiple vregs");
    MRI->setRegClass(VRegs[i][0], &SPIRV::IDRegClass);
    MIRBuilder.buildInstr(SPIRV::OpFunctionParameter)
        .addDef(VRegs[i][0])
        .addUse(GR->getSPIRVTypeID(ArgTypeVRegs[i]));
    if (F.isDeclaration())
      GR->add(&Arg, &MIRBuilder.getMF(), VRegs[i][0]);
    i++;
  }
  // Name the function.
  if (F.hasName())
    buildOpName(FuncVReg, F.getName(), MIRBuilder);

  // Handle entry points and function linkage.
  if (F.getCallingConv() == CallingConv::SPIR_KERNEL) {
    auto MIB = MIRBuilder.buildInstr(SPIRV::OpEntryPoint)
                   .addImm(static_cast<uint32_t>(SPIRV::ExecutionModel::Kernel))
                   .addUse(FuncVReg);
    addStringImm(F.getName(), MIB);
  } else if (F.getLinkage() == GlobalValue::LinkageTypes::ExternalLinkage ||
             F.getLinkage() == GlobalValue::LinkOnceODRLinkage) {
    auto LnkTy = F.isDeclaration() ? SPIRV::LinkageType::Import
                                   : SPIRV::LinkageType::Export;
    buildOpDecorate(FuncVReg, MIRBuilder, SPIRV::Decoration::LinkageAttributes,
                    {static_cast<uint32_t>(LnkTy)}, F.getGlobalIdentifier());
  }

  return true;
}

bool SPIRVCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
                                  CallLoweringInfo &Info) const {
  // Currently call returns should have single vregs.
  // TODO: handle the case of multiple registers.
  if (Info.OrigRet.Regs.size() > 1)
    return false;
  MachineFunction &MF = MIRBuilder.getMF();
  GR->setCurrentFunc(MF);
  FunctionType *FTy = nullptr;
  const Function *CF = nullptr;

  // Emit a regular OpFunctionCall. If it's an externally declared function,
  // be sure to emit its type and function declaration here. It will be hoisted
  // globally later.
  if (Info.Callee.isGlobal()) {
    CF = dyn_cast_or_null<const Function>(Info.Callee.getGlobal());
    // TODO: support constexpr casts and indirect calls.
    if (CF == nullptr)
      return false;
    FTy = getOriginalFunctionType(*CF);
  }

  Register ResVReg =
      Info.OrigRet.Regs.empty() ? Register(0) : Info.OrigRet.Regs[0];
  if (CF && CF->isDeclaration() &&
      !GR->find(CF, &MIRBuilder.getMF()).isValid()) {
    // Emit the type info and forward function declaration to the first MBB
    // to ensure VReg definition dependencies are valid across all MBBs.
    MachineIRBuilder FirstBlockBuilder;
    FirstBlockBuilder.setMF(MF);
    FirstBlockBuilder.setMBB(*MF.getBlockNumbered(0));

    SmallVector<ArrayRef<Register>, 8> VRegArgs;
    SmallVector<SmallVector<Register, 1>, 8> ToInsert;
    for (const Argument &Arg : CF->args()) {
      if (MIRBuilder.getDataLayout().getTypeStoreSize(Arg.getType()).isZero())
        continue; // Don't handle zero sized types.
      ToInsert.push_back(
          {MIRBuilder.getMRI()->createGenericVirtualRegister(LLT::scalar(32))});
      VRegArgs.push_back(ToInsert.back());
    }
    // TODO: Reuse FunctionLoweringInfo
    FunctionLoweringInfo FuncInfo;
    lowerFormalArguments(FirstBlockBuilder, *CF, VRegArgs, FuncInfo);
  }

  // Make sure there's a valid return reg, even for functions returning void.
  if (!ResVReg.isValid())
    ResVReg = MIRBuilder.getMRI()->createVirtualRegister(&SPIRV::IDRegClass);
  SPIRVType *RetType =
      GR->assignTypeToVReg(FTy->getReturnType(), ResVReg, MIRBuilder);

  // Emit the OpFunctionCall and its args.
  auto MIB = MIRBuilder.buildInstr(SPIRV::OpFunctionCall)
                 .addDef(ResVReg)
                 .addUse(GR->getSPIRVTypeID(RetType))
                 .add(Info.Callee);

  for (const auto &Arg : Info.OrigArgs) {
    // Currently call args should have single vregs.
    if (Arg.Regs.size() > 1)
      return false;
    MIB.addUse(Arg.Regs[0]);
  }
  const auto &STI = MF.getSubtarget();
  return MIB.constrainAllUses(MIRBuilder.getTII(), *STI.getRegisterInfo(),
                              *STI.getRegBankInfo());
}