1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
//===- SPIRVModuleAnalysis.cpp - analysis of global instrs & regs - C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The analysis collects instructions that should be output at the module level
// and performs the global register numbering.
//
// The results of this analysis are used in AsmPrinter to rename registers
// globally and to output required instructions at the module level.
//
//===----------------------------------------------------------------------===//
#include "SPIRVModuleAnalysis.h"
#include "SPIRV.h"
#include "SPIRVGlobalRegistry.h"
#include "SPIRVSubtarget.h"
#include "SPIRVTargetMachine.h"
#include "SPIRVUtils.h"
#include "TargetInfo/SPIRVTargetInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"
using namespace llvm;
#define DEBUG_TYPE "spirv-module-analysis"
static cl::opt<bool>
SPVDumpDeps("spv-dump-deps",
cl::desc("Dump MIR with SPIR-V dependencies info"),
cl::Optional, cl::init(false));
char llvm::SPIRVModuleAnalysis::ID = 0;
namespace llvm {
void initializeSPIRVModuleAnalysisPass(PassRegistry &);
} // namespace llvm
INITIALIZE_PASS(SPIRVModuleAnalysis, DEBUG_TYPE, "SPIRV module analysis", true,
true)
// Retrieve an unsigned from an MDNode with a list of them as operands.
static unsigned getMetadataUInt(MDNode *MdNode, unsigned OpIndex,
unsigned DefaultVal = 0) {
if (MdNode && OpIndex < MdNode->getNumOperands()) {
const auto &Op = MdNode->getOperand(OpIndex);
return mdconst::extract<ConstantInt>(Op)->getZExtValue();
}
return DefaultVal;
}
void SPIRVModuleAnalysis::setBaseInfo(const Module &M) {
MAI.MaxID = 0;
for (int i = 0; i < SPIRV::NUM_MODULE_SECTIONS; i++)
MAI.MS[i].clear();
MAI.RegisterAliasTable.clear();
MAI.InstrsToDelete.clear();
MAI.FuncNameMap.clear();
MAI.GlobalVarList.clear();
MAI.ExtInstSetMap.clear();
// TODO: determine memory model and source language from the configuratoin.
if (auto MemModel = M.getNamedMetadata("spirv.MemoryModel")) {
auto MemMD = MemModel->getOperand(0);
MAI.Addr = static_cast<SPIRV::AddressingModel>(getMetadataUInt(MemMD, 0));
MAI.Mem = static_cast<SPIRV::MemoryModel>(getMetadataUInt(MemMD, 1));
} else {
MAI.Mem = SPIRV::MemoryModel::OpenCL;
unsigned PtrSize = ST->getPointerSize();
MAI.Addr = PtrSize == 32 ? SPIRV::AddressingModel::Physical32
: PtrSize == 64 ? SPIRV::AddressingModel::Physical64
: SPIRV::AddressingModel::Logical;
}
// Get the OpenCL version number from metadata.
// TODO: support other source languages.
if (auto VerNode = M.getNamedMetadata("opencl.ocl.version")) {
MAI.SrcLang = SPIRV::SourceLanguage::OpenCL_C;
// Construct version literal in accordance with SPIRV-LLVM-Translator.
// TODO: support multiple OCL version metadata.
assert(VerNode->getNumOperands() > 0 && "Invalid SPIR");
auto VersionMD = VerNode->getOperand(0);
unsigned MajorNum = getMetadataUInt(VersionMD, 0, 2);
unsigned MinorNum = getMetadataUInt(VersionMD, 1);
unsigned RevNum = getMetadataUInt(VersionMD, 2);
MAI.SrcLangVersion = (MajorNum * 100 + MinorNum) * 1000 + RevNum;
} else {
MAI.SrcLang = SPIRV::SourceLanguage::Unknown;
MAI.SrcLangVersion = 0;
}
if (auto ExtNode = M.getNamedMetadata("opencl.used.extensions")) {
for (unsigned I = 0, E = ExtNode->getNumOperands(); I != E; ++I) {
MDNode *MD = ExtNode->getOperand(I);
if (!MD || MD->getNumOperands() == 0)
continue;
for (unsigned J = 0, N = MD->getNumOperands(); J != N; ++J)
MAI.SrcExt.insert(cast<MDString>(MD->getOperand(J))->getString());
}
}
// TODO: check if it's required by default.
MAI.ExtInstSetMap[static_cast<unsigned>(SPIRV::InstructionSet::OpenCL_std)] =
Register::index2VirtReg(MAI.getNextID());
}
// Collect MI which defines the register in the given machine function.
static void collectDefInstr(Register Reg, const MachineFunction *MF,
SPIRV::ModuleAnalysisInfo *MAI,
SPIRV::ModuleSectionType MSType,
bool DoInsert = true) {
assert(MAI->hasRegisterAlias(MF, Reg) && "Cannot find register alias");
MachineInstr *MI = MF->getRegInfo().getUniqueVRegDef(Reg);
assert(MI && "There should be an instruction that defines the register");
MAI->setSkipEmission(MI);
if (DoInsert)
MAI->MS[MSType].push_back(MI);
}
void SPIRVModuleAnalysis::collectGlobalEntities(
const std::vector<SPIRV::DTSortableEntry *> &DepsGraph,
SPIRV::ModuleSectionType MSType,
std::function<bool(const SPIRV::DTSortableEntry *)> Pred,
bool UsePreOrder = false) {
DenseSet<const SPIRV::DTSortableEntry *> Visited;
for (const auto *E : DepsGraph) {
std::function<void(const SPIRV::DTSortableEntry *)> RecHoistUtil;
// NOTE: here we prefer recursive approach over iterative because
// we don't expect depchains long enough to cause SO.
RecHoistUtil = [MSType, UsePreOrder, &Visited, &Pred,
&RecHoistUtil](const SPIRV::DTSortableEntry *E) {
if (Visited.count(E) || !Pred(E))
return;
Visited.insert(E);
// Traversing deps graph in post-order allows us to get rid of
// register aliases preprocessing.
// But pre-order is required for correct processing of function
// declaration and arguments processing.
if (!UsePreOrder)
for (auto *S : E->getDeps())
RecHoistUtil(S);
Register GlobalReg = Register::index2VirtReg(MAI.getNextID());
bool IsFirst = true;
for (auto &U : *E) {
const MachineFunction *MF = U.first;
Register Reg = U.second;
MAI.setRegisterAlias(MF, Reg, GlobalReg);
if (!MF->getRegInfo().getUniqueVRegDef(Reg))
continue;
collectDefInstr(Reg, MF, &MAI, MSType, IsFirst);
IsFirst = false;
if (E->getIsGV())
MAI.GlobalVarList.push_back(MF->getRegInfo().getUniqueVRegDef(Reg));
}
if (UsePreOrder)
for (auto *S : E->getDeps())
RecHoistUtil(S);
};
RecHoistUtil(E);
}
}
// The function initializes global register alias table for types, consts,
// global vars and func decls and collects these instruction for output
// at module level. Also it collects explicit OpExtension/OpCapability
// instructions.
void SPIRVModuleAnalysis::processDefInstrs(const Module &M) {
std::vector<SPIRV::DTSortableEntry *> DepsGraph;
GR->buildDepsGraph(DepsGraph, SPVDumpDeps ? MMI : nullptr);
collectGlobalEntities(
DepsGraph, SPIRV::MB_TypeConstVars,
[](const SPIRV::DTSortableEntry *E) { return !E->getIsFunc(); });
collectGlobalEntities(
DepsGraph, SPIRV::MB_ExtFuncDecls,
[](const SPIRV::DTSortableEntry *E) { return E->getIsFunc(); }, true);
}
// True if there is an instruction in the MS list with all the same operands as
// the given instruction has (after the given starting index).
// TODO: maybe it needs to check Opcodes too.
static bool findSameInstrInMS(const MachineInstr &A,
SPIRV::ModuleSectionType MSType,
SPIRV::ModuleAnalysisInfo &MAI,
unsigned StartOpIndex = 0) {
for (const auto *B : MAI.MS[MSType]) {
const unsigned NumAOps = A.getNumOperands();
if (NumAOps != B->getNumOperands() || A.getNumDefs() != B->getNumDefs())
continue;
bool AllOpsMatch = true;
for (unsigned i = StartOpIndex; i < NumAOps && AllOpsMatch; ++i) {
if (A.getOperand(i).isReg() && B->getOperand(i).isReg()) {
Register RegA = A.getOperand(i).getReg();
Register RegB = B->getOperand(i).getReg();
AllOpsMatch = MAI.getRegisterAlias(A.getMF(), RegA) ==
MAI.getRegisterAlias(B->getMF(), RegB);
} else {
AllOpsMatch = A.getOperand(i).isIdenticalTo(B->getOperand(i));
}
}
if (AllOpsMatch)
return true;
}
return false;
}
// Look for IDs declared with Import linkage, and map the imported name string
// to the register defining that variable (which will usually be the result of
// an OpFunction). This lets us call externally imported functions using
// the correct ID registers.
void SPIRVModuleAnalysis::collectFuncNames(MachineInstr &MI,
const Function &F) {
if (MI.getOpcode() == SPIRV::OpDecorate) {
// If it's got Import linkage.
auto Dec = MI.getOperand(1).getImm();
if (Dec == static_cast<unsigned>(SPIRV::Decoration::LinkageAttributes)) {
auto Lnk = MI.getOperand(MI.getNumOperands() - 1).getImm();
if (Lnk == static_cast<unsigned>(SPIRV::LinkageType::Import)) {
// Map imported function name to function ID register.
std::string Name = getStringImm(MI, 2);
Register Target = MI.getOperand(0).getReg();
// TODO: check defs from different MFs.
MAI.FuncNameMap[Name] = MAI.getRegisterAlias(MI.getMF(), Target);
}
}
} else if (MI.getOpcode() == SPIRV::OpFunction) {
// Record all internal OpFunction declarations.
Register Reg = MI.defs().begin()->getReg();
Register GlobalReg = MAI.getRegisterAlias(MI.getMF(), Reg);
assert(GlobalReg.isValid());
// TODO: check that it does not conflict with existing entries.
MAI.FuncNameMap[F.getGlobalIdentifier()] = GlobalReg;
}
}
// Collect the given instruction in the specified MS. We assume global register
// numbering has already occurred by this point. We can directly compare reg
// arguments when detecting duplicates.
static void collectOtherInstr(MachineInstr &MI, SPIRV::ModuleAnalysisInfo &MAI,
SPIRV::ModuleSectionType MSType,
bool Append = true) {
MAI.setSkipEmission(&MI);
if (findSameInstrInMS(MI, MSType, MAI))
return; // Found a duplicate, so don't add it.
// No duplicates, so add it.
if (Append)
MAI.MS[MSType].push_back(&MI);
else
MAI.MS[MSType].insert(MAI.MS[MSType].begin(), &MI);
}
// Some global instructions make reference to function-local ID regs, so cannot
// be correctly collected until these registers are globally numbered.
void SPIRVModuleAnalysis::processOtherInstrs(const Module &M) {
for (auto F = M.begin(), E = M.end(); F != E; ++F) {
if ((*F).isDeclaration())
continue;
MachineFunction *MF = MMI->getMachineFunction(*F);
assert(MF);
for (MachineBasicBlock &MBB : *MF)
for (MachineInstr &MI : MBB) {
if (MAI.getSkipEmission(&MI))
continue;
const unsigned OpCode = MI.getOpcode();
if (OpCode == SPIRV::OpName || OpCode == SPIRV::OpMemberName) {
collectOtherInstr(MI, MAI, SPIRV::MB_DebugNames);
} else if (OpCode == SPIRV::OpEntryPoint) {
collectOtherInstr(MI, MAI, SPIRV::MB_EntryPoints);
} else if (TII->isDecorationInstr(MI)) {
collectOtherInstr(MI, MAI, SPIRV::MB_Annotations);
collectFuncNames(MI, *F);
} else if (TII->isConstantInstr(MI)) {
// Now OpSpecConstant*s are not in DT,
// but they need to be collected anyway.
collectOtherInstr(MI, MAI, SPIRV::MB_TypeConstVars);
} else if (OpCode == SPIRV::OpFunction) {
collectFuncNames(MI, *F);
} else if (OpCode == SPIRV::OpTypeForwardPointer) {
collectOtherInstr(MI, MAI, SPIRV::MB_TypeConstVars, false);
}
}
}
}
// Number registers in all functions globally from 0 onwards and store
// the result in global register alias table. Some registers are already
// numbered in collectGlobalEntities.
void SPIRVModuleAnalysis::numberRegistersGlobally(const Module &M) {
for (auto F = M.begin(), E = M.end(); F != E; ++F) {
if ((*F).isDeclaration())
continue;
MachineFunction *MF = MMI->getMachineFunction(*F);
assert(MF);
for (MachineBasicBlock &MBB : *MF) {
for (MachineInstr &MI : MBB) {
for (MachineOperand &Op : MI.operands()) {
if (!Op.isReg())
continue;
Register Reg = Op.getReg();
if (MAI.hasRegisterAlias(MF, Reg))
continue;
Register NewReg = Register::index2VirtReg(MAI.getNextID());
MAI.setRegisterAlias(MF, Reg, NewReg);
}
if (MI.getOpcode() != SPIRV::OpExtInst)
continue;
auto Set = MI.getOperand(2).getImm();
if (MAI.ExtInstSetMap.find(Set) == MAI.ExtInstSetMap.end())
MAI.ExtInstSetMap[Set] = Register::index2VirtReg(MAI.getNextID());
}
}
}
}
// Find OpIEqual and OpBranchConditional instructions originating from
// OpSwitches, mark them skipped for emission. Also mark MBB skipped if it
// contains only these instructions.
static void processSwitches(const Module &M, SPIRV::ModuleAnalysisInfo &MAI,
MachineModuleInfo *MMI) {
DenseSet<Register> SwitchRegs;
for (auto F = M.begin(), E = M.end(); F != E; ++F) {
MachineFunction *MF = MMI->getMachineFunction(*F);
if (!MF)
continue;
for (MachineBasicBlock &MBB : *MF)
for (MachineInstr &MI : MBB) {
if (MAI.getSkipEmission(&MI))
continue;
if (MI.getOpcode() == SPIRV::OpSwitch) {
assert(MI.getOperand(0).isReg());
SwitchRegs.insert(MI.getOperand(0).getReg());
}
if (MI.getOpcode() != SPIRV::OpIEqual || !MI.getOperand(2).isReg() ||
!SwitchRegs.contains(MI.getOperand(2).getReg()))
continue;
Register CmpReg = MI.getOperand(0).getReg();
MachineInstr *CBr = MI.getNextNode();
assert(CBr && CBr->getOpcode() == SPIRV::OpBranchConditional &&
CBr->getOperand(0).isReg() &&
CBr->getOperand(0).getReg() == CmpReg);
MAI.setSkipEmission(&MI);
MAI.setSkipEmission(CBr);
if (&MBB.front() == &MI && &MBB.back() == CBr)
MAI.MBBsToSkip.insert(&MBB);
}
}
}
struct SPIRV::ModuleAnalysisInfo SPIRVModuleAnalysis::MAI;
void SPIRVModuleAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetPassConfig>();
AU.addRequired<MachineModuleInfoWrapperPass>();
}
bool SPIRVModuleAnalysis::runOnModule(Module &M) {
SPIRVTargetMachine &TM =
getAnalysis<TargetPassConfig>().getTM<SPIRVTargetMachine>();
ST = TM.getSubtargetImpl();
GR = ST->getSPIRVGlobalRegistry();
TII = ST->getInstrInfo();
MMI = &getAnalysis<MachineModuleInfoWrapperPass>().getMMI();
setBaseInfo(M);
processSwitches(M, MAI, MMI);
// Process type/const/global var/func decl instructions, number their
// destination registers from 0 to N, collect Extensions and Capabilities.
processDefInstrs(M);
// Number rest of registers from N+1 onwards.
numberRegistersGlobally(M);
// Collect OpName, OpEntryPoint, OpDecorate etc, process other instructions.
processOtherInstrs(M);
return false;
}
|