1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
//===-- SPIRVPrepareFunctions.cpp - modify function signatures --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass modifies function signatures containing aggregate arguments
// and/or return value. Also it substitutes some llvm intrinsic calls by
// function calls, generating these functions as the translator does.
//
// NOTE: this pass is a module-level one due to the necessity to modify
// GVs/functions.
//
//===----------------------------------------------------------------------===//
#include "SPIRV.h"
#include "SPIRVTargetMachine.h"
#include "SPIRVUtils.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/LowerMemIntrinsics.h"
using namespace llvm;
namespace llvm {
void initializeSPIRVPrepareFunctionsPass(PassRegistry &);
}
namespace {
class SPIRVPrepareFunctions : public ModulePass {
Function *processFunctionSignature(Function *F);
public:
static char ID;
SPIRVPrepareFunctions() : ModulePass(ID) {
initializeSPIRVPrepareFunctionsPass(*PassRegistry::getPassRegistry());
}
bool runOnModule(Module &M) override;
StringRef getPassName() const override { return "SPIRV prepare functions"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
ModulePass::getAnalysisUsage(AU);
}
};
} // namespace
char SPIRVPrepareFunctions::ID = 0;
INITIALIZE_PASS(SPIRVPrepareFunctions, "prepare-functions",
"SPIRV prepare functions", false, false)
Function *SPIRVPrepareFunctions::processFunctionSignature(Function *F) {
IRBuilder<> B(F->getContext());
bool IsRetAggr = F->getReturnType()->isAggregateType();
bool HasAggrArg =
std::any_of(F->arg_begin(), F->arg_end(), [](Argument &Arg) {
return Arg.getType()->isAggregateType();
});
bool DoClone = IsRetAggr || HasAggrArg;
if (!DoClone)
return F;
SmallVector<std::pair<int, Type *>, 4> ChangedTypes;
Type *RetType = IsRetAggr ? B.getInt32Ty() : F->getReturnType();
if (IsRetAggr)
ChangedTypes.push_back(std::pair<int, Type *>(-1, F->getReturnType()));
SmallVector<Type *, 4> ArgTypes;
for (const auto &Arg : F->args()) {
if (Arg.getType()->isAggregateType()) {
ArgTypes.push_back(B.getInt32Ty());
ChangedTypes.push_back(
std::pair<int, Type *>(Arg.getArgNo(), Arg.getType()));
} else
ArgTypes.push_back(Arg.getType());
}
FunctionType *NewFTy =
FunctionType::get(RetType, ArgTypes, F->getFunctionType()->isVarArg());
Function *NewF =
Function::Create(NewFTy, F->getLinkage(), F->getName(), *F->getParent());
ValueToValueMapTy VMap;
auto NewFArgIt = NewF->arg_begin();
for (auto &Arg : F->args()) {
StringRef ArgName = Arg.getName();
NewFArgIt->setName(ArgName);
VMap[&Arg] = &(*NewFArgIt++);
}
SmallVector<ReturnInst *, 8> Returns;
CloneFunctionInto(NewF, F, VMap, CloneFunctionChangeType::LocalChangesOnly,
Returns);
NewF->takeName(F);
NamedMDNode *FuncMD =
F->getParent()->getOrInsertNamedMetadata("spv.cloned_funcs");
SmallVector<Metadata *, 2> MDArgs;
MDArgs.push_back(MDString::get(B.getContext(), NewF->getName()));
for (auto &ChangedTyP : ChangedTypes)
MDArgs.push_back(MDNode::get(
B.getContext(),
{ConstantAsMetadata::get(B.getInt32(ChangedTyP.first)),
ValueAsMetadata::get(Constant::getNullValue(ChangedTyP.second))}));
MDNode *ThisFuncMD = MDNode::get(B.getContext(), MDArgs);
FuncMD->addOperand(ThisFuncMD);
for (auto *U : make_early_inc_range(F->users())) {
if (auto *CI = dyn_cast<CallInst>(U))
CI->mutateFunctionType(NewF->getFunctionType());
U->replaceUsesOfWith(F, NewF);
}
return NewF;
}
std::string lowerLLVMIntrinsicName(IntrinsicInst *II) {
Function *IntrinsicFunc = II->getCalledFunction();
assert(IntrinsicFunc && "Missing function");
std::string FuncName = IntrinsicFunc->getName().str();
std::replace(FuncName.begin(), FuncName.end(), '.', '_');
FuncName = "spirv." + FuncName;
return FuncName;
}
static Function *getOrCreateFunction(Module *M, Type *RetTy,
ArrayRef<Type *> ArgTypes,
StringRef Name) {
FunctionType *FT = FunctionType::get(RetTy, ArgTypes, false);
Function *F = M->getFunction(Name);
if (F && F->getFunctionType() == FT)
return F;
Function *NewF = Function::Create(FT, GlobalValue::ExternalLinkage, Name, M);
if (F)
NewF->setDSOLocal(F->isDSOLocal());
NewF->setCallingConv(CallingConv::SPIR_FUNC);
return NewF;
}
static void lowerFunnelShifts(Module *M, IntrinsicInst *FSHIntrinsic) {
// Get a separate function - otherwise, we'd have to rework the CFG of the
// current one. Then simply replace the intrinsic uses with a call to the new
// function.
// Generate LLVM IR for i* @spirv.llvm_fsh?_i* (i* %a, i* %b, i* %c)
FunctionType *FSHFuncTy = FSHIntrinsic->getFunctionType();
Type *FSHRetTy = FSHFuncTy->getReturnType();
const std::string FuncName = lowerLLVMIntrinsicName(FSHIntrinsic);
Function *FSHFunc =
getOrCreateFunction(M, FSHRetTy, FSHFuncTy->params(), FuncName);
if (!FSHFunc->empty()) {
FSHIntrinsic->setCalledFunction(FSHFunc);
return;
}
BasicBlock *RotateBB = BasicBlock::Create(M->getContext(), "rotate", FSHFunc);
IRBuilder<> IRB(RotateBB);
Type *Ty = FSHFunc->getReturnType();
// Build the actual funnel shift rotate logic.
// In the comments, "int" is used interchangeably with "vector of int
// elements".
FixedVectorType *VectorTy = dyn_cast<FixedVectorType>(Ty);
Type *IntTy = VectorTy ? VectorTy->getElementType() : Ty;
unsigned BitWidth = IntTy->getIntegerBitWidth();
ConstantInt *BitWidthConstant = IRB.getInt({BitWidth, BitWidth});
Value *BitWidthForInsts =
VectorTy
? IRB.CreateVectorSplat(VectorTy->getNumElements(), BitWidthConstant)
: BitWidthConstant;
Value *RotateModVal =
IRB.CreateURem(/*Rotate*/ FSHFunc->getArg(2), BitWidthForInsts);
Value *FirstShift = nullptr, *SecShift = nullptr;
if (FSHIntrinsic->getIntrinsicID() == Intrinsic::fshr) {
// Shift the less significant number right, the "rotate" number of bits
// will be 0-filled on the left as a result of this regular shift.
FirstShift = IRB.CreateLShr(FSHFunc->getArg(1), RotateModVal);
} else {
// Shift the more significant number left, the "rotate" number of bits
// will be 0-filled on the right as a result of this regular shift.
FirstShift = IRB.CreateShl(FSHFunc->getArg(0), RotateModVal);
}
// We want the "rotate" number of the more significant int's LSBs (MSBs) to
// occupy the leftmost (rightmost) "0 space" left by the previous operation.
// Therefore, subtract the "rotate" number from the integer bitsize...
Value *SubRotateVal = IRB.CreateSub(BitWidthForInsts, RotateModVal);
if (FSHIntrinsic->getIntrinsicID() == Intrinsic::fshr) {
// ...and left-shift the more significant int by this number, zero-filling
// the LSBs.
SecShift = IRB.CreateShl(FSHFunc->getArg(0), SubRotateVal);
} else {
// ...and right-shift the less significant int by this number, zero-filling
// the MSBs.
SecShift = IRB.CreateLShr(FSHFunc->getArg(1), SubRotateVal);
}
// A simple binary addition of the shifted ints yields the final result.
IRB.CreateRet(IRB.CreateOr(FirstShift, SecShift));
FSHIntrinsic->setCalledFunction(FSHFunc);
}
static void buildUMulWithOverflowFunc(Module *M, Function *UMulFunc) {
// The function body is already created.
if (!UMulFunc->empty())
return;
BasicBlock *EntryBB = BasicBlock::Create(M->getContext(), "entry", UMulFunc);
IRBuilder<> IRB(EntryBB);
// Build the actual unsigned multiplication logic with the overflow
// indication. Do unsigned multiplication Mul = A * B. Then check
// if unsigned division Div = Mul / A is not equal to B. If so,
// then overflow has happened.
Value *Mul = IRB.CreateNUWMul(UMulFunc->getArg(0), UMulFunc->getArg(1));
Value *Div = IRB.CreateUDiv(Mul, UMulFunc->getArg(0));
Value *Overflow = IRB.CreateICmpNE(UMulFunc->getArg(0), Div);
// umul.with.overflow intrinsic return a structure, where the first element
// is the multiplication result, and the second is an overflow bit.
Type *StructTy = UMulFunc->getReturnType();
Value *Agg = IRB.CreateInsertValue(UndefValue::get(StructTy), Mul, {0});
Value *Res = IRB.CreateInsertValue(Agg, Overflow, {1});
IRB.CreateRet(Res);
}
static void lowerUMulWithOverflow(Module *M, IntrinsicInst *UMulIntrinsic) {
// Get a separate function - otherwise, we'd have to rework the CFG of the
// current one. Then simply replace the intrinsic uses with a call to the new
// function.
FunctionType *UMulFuncTy = UMulIntrinsic->getFunctionType();
Type *FSHLRetTy = UMulFuncTy->getReturnType();
const std::string FuncName = lowerLLVMIntrinsicName(UMulIntrinsic);
Function *UMulFunc =
getOrCreateFunction(M, FSHLRetTy, UMulFuncTy->params(), FuncName);
buildUMulWithOverflowFunc(M, UMulFunc);
UMulIntrinsic->setCalledFunction(UMulFunc);
}
static void substituteIntrinsicCalls(Module *M, Function *F) {
for (BasicBlock &BB : *F) {
for (Instruction &I : BB) {
auto Call = dyn_cast<CallInst>(&I);
if (!Call)
continue;
Call->setTailCall(false);
Function *CF = Call->getCalledFunction();
if (!CF || !CF->isIntrinsic())
continue;
auto *II = cast<IntrinsicInst>(Call);
if (II->getIntrinsicID() == Intrinsic::fshl ||
II->getIntrinsicID() == Intrinsic::fshr)
lowerFunnelShifts(M, II);
else if (II->getIntrinsicID() == Intrinsic::umul_with_overflow)
lowerUMulWithOverflow(M, II);
}
}
}
bool SPIRVPrepareFunctions::runOnModule(Module &M) {
for (Function &F : M)
substituteIntrinsicCalls(&M, &F);
std::vector<Function *> FuncsWorklist;
bool Changed = false;
for (auto &F : M)
FuncsWorklist.push_back(&F);
for (auto *Func : FuncsWorklist) {
Function *F = processFunctionSignature(Func);
bool CreatedNewF = F != Func;
if (Func->isDeclaration()) {
Changed |= CreatedNewF;
continue;
}
if (CreatedNewF)
Func->eraseFromParent();
}
return Changed;
}
ModulePass *llvm::createSPIRVPrepareFunctionsPass() {
return new SPIRVPrepareFunctions();
}
|