1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
|
//===- GraphBuilder.cpp -----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "GraphBuilder.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/DebugInfo/Symbolize/SymbolizableModule.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/COFF.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
using Instr = llvm::cfi_verify::FileAnalysis::Instr;
namespace llvm {
namespace cfi_verify {
uint64_t SearchLengthForUndef;
uint64_t SearchLengthForConditionalBranch;
static cl::opt<uint64_t, true> SearchLengthForUndefArg(
"search-length-undef",
cl::desc("Specify the maximum amount of instructions "
"to inspect when searching for an undefined "
"instruction from a conditional branch."),
cl::location(SearchLengthForUndef), cl::init(2));
static cl::opt<uint64_t, true> SearchLengthForConditionalBranchArg(
"search-length-cb",
cl::desc("Specify the maximum amount of instructions "
"to inspect when searching for a conditional "
"branch from an indirect control flow."),
cl::location(SearchLengthForConditionalBranch), cl::init(20));
std::vector<uint64_t> GraphResult::flattenAddress(uint64_t Address) const {
std::vector<uint64_t> Addresses;
auto It = IntermediateNodes.find(Address);
Addresses.push_back(Address);
while (It != IntermediateNodes.end()) {
Addresses.push_back(It->second);
It = IntermediateNodes.find(It->second);
}
return Addresses;
}
void printPairToDOT(const FileAnalysis &Analysis, raw_ostream &OS,
uint64_t From, uint64_t To) {
OS << " \"" << format_hex(From, 2) << ": ";
Analysis.printInstruction(Analysis.getInstructionOrDie(From), OS);
OS << "\" -> \"" << format_hex(To, 2) << ": ";
Analysis.printInstruction(Analysis.getInstructionOrDie(To), OS);
OS << "\"\n";
}
void GraphResult::printToDOT(const FileAnalysis &Analysis,
raw_ostream &OS) const {
std::map<uint64_t, uint64_t> SortedIntermediateNodes(
IntermediateNodes.begin(), IntermediateNodes.end());
OS << "digraph graph_" << format_hex(BaseAddress, 2) << " {\n";
for (const auto &KV : SortedIntermediateNodes)
printPairToDOT(Analysis, OS, KV.first, KV.second);
for (auto &BranchNode : ConditionalBranchNodes) {
for (auto &V : {BranchNode.Target, BranchNode.Fallthrough})
printPairToDOT(Analysis, OS, BranchNode.Address, V);
}
OS << "}\n";
}
GraphResult GraphBuilder::buildFlowGraph(const FileAnalysis &Analysis,
object::SectionedAddress Address) {
GraphResult Result;
Result.BaseAddress = Address.Address;
DenseSet<uint64_t> OpenedNodes;
const auto &IndirectInstructions = Analysis.getIndirectInstructions();
// check that IndirectInstructions contains specified Address
if (IndirectInstructions.find(Address) == IndirectInstructions.end()) {
return Result;
}
buildFlowGraphImpl(Analysis, OpenedNodes, Result, Address.Address, 0);
return Result;
}
void GraphBuilder::buildFlowsToUndefined(const FileAnalysis &Analysis,
GraphResult &Result,
ConditionalBranchNode &BranchNode,
const Instr &BranchInstrMeta) {
assert(SearchLengthForUndef > 0 &&
"Search length for undefined flow must be greater than zero.");
// Start setting up the next node in the block.
uint64_t NextAddress = 0;
const Instr *NextMetaPtr;
// Find out the next instruction in the block and add it to the new
// node.
if (BranchNode.Target && !BranchNode.Fallthrough) {
// We know the target of the branch, find the fallthrough.
NextMetaPtr = Analysis.getNextInstructionSequential(BranchInstrMeta);
if (!NextMetaPtr) {
errs() << "Failed to get next instruction from "
<< format_hex(BranchNode.Address, 2) << ".\n";
return;
}
NextAddress = NextMetaPtr->VMAddress;
BranchNode.Fallthrough =
NextMetaPtr->VMAddress; // Add the new node to the branch head.
} else if (BranchNode.Fallthrough && !BranchNode.Target) {
// We already know the fallthrough, evaluate the target.
uint64_t Target;
if (!Analysis.getMCInstrAnalysis()->evaluateBranch(
BranchInstrMeta.Instruction, BranchInstrMeta.VMAddress,
BranchInstrMeta.InstructionSize, Target)) {
errs() << "Failed to get branch target for conditional branch at address "
<< format_hex(BranchInstrMeta.VMAddress, 2) << ".\n";
return;
}
// Resolve the meta pointer for the target of this branch.
NextMetaPtr = Analysis.getInstruction(Target);
if (!NextMetaPtr) {
errs() << "Failed to find instruction at address "
<< format_hex(Target, 2) << ".\n";
return;
}
NextAddress = Target;
BranchNode.Target =
NextMetaPtr->VMAddress; // Add the new node to the branch head.
} else {
errs() << "ControlBranchNode supplied to buildFlowsToUndefined should "
"provide Target xor Fallthrough.\n";
return;
}
uint64_t CurrentAddress = NextAddress;
const Instr *CurrentMetaPtr = NextMetaPtr;
// Now the branch head has been set properly, complete the rest of the block.
for (uint64_t i = 1; i < SearchLengthForUndef; ++i) {
// Check to see whether the block should die.
if (Analysis.isCFITrap(*CurrentMetaPtr)) {
BranchNode.CFIProtection = true;
return;
}
// Find the metadata of the next instruction.
NextMetaPtr = Analysis.getDefiniteNextInstruction(*CurrentMetaPtr);
if (!NextMetaPtr)
return;
// Setup the next node.
NextAddress = NextMetaPtr->VMAddress;
// Add this as an intermediate.
Result.IntermediateNodes[CurrentAddress] = NextAddress;
// Move the 'current' pointers to the new tail of the block.
CurrentMetaPtr = NextMetaPtr;
CurrentAddress = NextAddress;
}
// Final check of the last thing we added to the block.
if (Analysis.isCFITrap(*CurrentMetaPtr))
BranchNode.CFIProtection = true;
}
void GraphBuilder::buildFlowGraphImpl(const FileAnalysis &Analysis,
DenseSet<uint64_t> &OpenedNodes,
GraphResult &Result, uint64_t Address,
uint64_t Depth) {
// If we've exceeded the flow length, terminate.
if (Depth >= SearchLengthForConditionalBranch) {
Result.OrphanedNodes.push_back(Address);
return;
}
// Ensure this flow is acyclic.
if (OpenedNodes.count(Address))
Result.OrphanedNodes.push_back(Address);
// If this flow is already explored, stop here.
if (Result.IntermediateNodes.count(Address))
return;
// Get the metadata for the node instruction.
const auto &InstrMetaPtr = Analysis.getInstruction(Address);
if (!InstrMetaPtr) {
errs() << "Failed to build flow graph for instruction at address "
<< format_hex(Address, 2) << ".\n";
Result.OrphanedNodes.push_back(Address);
return;
}
const auto &ChildMeta = *InstrMetaPtr;
OpenedNodes.insert(Address);
std::set<const Instr *> CFCrossRefs =
Analysis.getDirectControlFlowXRefs(ChildMeta);
bool HasValidCrossRef = false;
for (const auto *ParentMetaPtr : CFCrossRefs) {
assert(ParentMetaPtr && "CFCrossRefs returned nullptr.");
const auto &ParentMeta = *ParentMetaPtr;
const auto &ParentDesc =
Analysis.getMCInstrInfo()->get(ParentMeta.Instruction.getOpcode());
if (!ParentDesc.mayAffectControlFlow(ParentMeta.Instruction,
*Analysis.getRegisterInfo())) {
// If this cross reference doesn't affect CF, continue the graph.
buildFlowGraphImpl(Analysis, OpenedNodes, Result, ParentMeta.VMAddress,
Depth + 1);
Result.IntermediateNodes[ParentMeta.VMAddress] = Address;
HasValidCrossRef = true;
continue;
}
// Call instructions are not valid in the upwards traversal.
if (ParentDesc.isCall()) {
Result.IntermediateNodes[ParentMeta.VMAddress] = Address;
Result.OrphanedNodes.push_back(ParentMeta.VMAddress);
continue;
}
// Evaluate the branch target to ascertain whether this XRef is the result
// of a fallthrough or the target of a branch.
uint64_t BranchTarget;
if (!Analysis.getMCInstrAnalysis()->evaluateBranch(
ParentMeta.Instruction, ParentMeta.VMAddress,
ParentMeta.InstructionSize, BranchTarget)) {
errs() << "Failed to evaluate branch target for instruction at address "
<< format_hex(ParentMeta.VMAddress, 2) << ".\n";
Result.IntermediateNodes[ParentMeta.VMAddress] = Address;
Result.OrphanedNodes.push_back(ParentMeta.VMAddress);
continue;
}
// Allow unconditional branches to be part of the upwards traversal.
if (ParentDesc.isUnconditionalBranch()) {
// Ensures that the unconditional branch is actually an XRef to the child.
if (BranchTarget != Address) {
errs() << "Control flow to " << format_hex(Address, 2)
<< ", but target resolution of "
<< format_hex(ParentMeta.VMAddress, 2)
<< " is not this address?\n";
Result.IntermediateNodes[ParentMeta.VMAddress] = Address;
Result.OrphanedNodes.push_back(ParentMeta.VMAddress);
continue;
}
buildFlowGraphImpl(Analysis, OpenedNodes, Result, ParentMeta.VMAddress,
Depth + 1);
Result.IntermediateNodes[ParentMeta.VMAddress] = Address;
HasValidCrossRef = true;
continue;
}
// Ensure that any unknown CFs are caught.
if (!ParentDesc.isConditionalBranch()) {
errs() << "Unknown control flow encountered when building graph at "
<< format_hex(Address, 2) << "\n.";
Result.IntermediateNodes[ParentMeta.VMAddress] = Address;
Result.OrphanedNodes.push_back(ParentMeta.VMAddress);
continue;
}
// Only direct conditional branches should be present at this point. Setup
// a conditional branch node and build flows to the ud2.
ConditionalBranchNode BranchNode;
BranchNode.Address = ParentMeta.VMAddress;
BranchNode.Target = 0;
BranchNode.Fallthrough = 0;
BranchNode.CFIProtection = false;
BranchNode.IndirectCFIsOnTargetPath = (BranchTarget == Address);
if (BranchTarget == Address)
BranchNode.Target = Address;
else
BranchNode.Fallthrough = Address;
HasValidCrossRef = true;
buildFlowsToUndefined(Analysis, Result, BranchNode, ParentMeta);
Result.ConditionalBranchNodes.push_back(BranchNode);
}
// When using cross-DSO, some indirect calls are not guarded by a branch to a
// trap but instead follow a call to __cfi_slowpath. For example:
// if (!InlinedFastCheck(f))
// call *f
// else {
// __cfi_slowpath(CallSiteTypeId, f);
// call *f
// }
// To mark the second call as protected, we recognize indirect calls that
// directly follow calls to functions that will trap on CFI violations.
if (CFCrossRefs.empty()) {
const Instr *PrevInstr = Analysis.getPrevInstructionSequential(ChildMeta);
if (PrevInstr && Analysis.willTrapOnCFIViolation(*PrevInstr)) {
Result.IntermediateNodes[PrevInstr->VMAddress] = Address;
HasValidCrossRef = true;
}
}
if (!HasValidCrossRef)
Result.OrphanedNodes.push_back(Address);
OpenedNodes.erase(Address);
}
} // namespace cfi_verify
} // namespace llvm
|