1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
|
//===-- Statistics.cpp - Debug Info quality metrics -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm-dwarfdump.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h"
#include "llvm/DebugInfo/DWARF/DWARFExpression.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/JSON.h"
#define DEBUG_TYPE "dwarfdump"
using namespace llvm;
using namespace llvm::dwarfdump;
using namespace llvm::object;
namespace {
/// This represents the number of categories of debug location coverage being
/// calculated. The first category is the number of variables with 0% location
/// coverage, but the last category is the number of variables with 100%
/// location coverage.
constexpr int NumOfCoverageCategories = 12;
/// This is used for zero location coverage bucket.
constexpr unsigned ZeroCoverageBucket = 0;
/// The UINT64_MAX is used as an indication of the overflow.
constexpr uint64_t OverflowValue = std::numeric_limits<uint64_t>::max();
/// This represents variables DIE offsets.
using AbstractOriginVarsTy = llvm::SmallVector<uint64_t>;
/// This maps function DIE offset to its variables.
using AbstractOriginVarsTyMap = llvm::DenseMap<uint64_t, AbstractOriginVarsTy>;
/// This represents function DIE offsets containing an abstract_origin.
using FunctionsWithAbstractOriginTy = llvm::SmallVector<uint64_t>;
/// This represents a data type for the stats and it helps us to
/// detect an overflow.
/// NOTE: This can be implemented as a template if there is an another type
/// needing this.
struct SaturatingUINT64 {
/// Number that represents the stats.
uint64_t Value;
SaturatingUINT64(uint64_t Value_) : Value(Value_) {}
void operator++(int) { return *this += 1; }
void operator+=(uint64_t Value_) {
if (Value != OverflowValue) {
if (Value < OverflowValue - Value_)
Value += Value_;
else
Value = OverflowValue;
}
}
};
/// Utility struct to store the full location of a DIE - its CU and offset.
struct DIELocation {
DWARFUnit *DwUnit;
uint64_t DIEOffset;
DIELocation(DWARFUnit *_DwUnit, uint64_t _DIEOffset)
: DwUnit(_DwUnit), DIEOffset(_DIEOffset) {}
};
/// This represents DWARF locations of CrossCU referencing DIEs.
using CrossCUReferencingDIELocationTy = llvm::SmallVector<DIELocation>;
/// This maps function DIE offset to its DWARF CU.
using FunctionDIECUTyMap = llvm::DenseMap<uint64_t, DWARFUnit *>;
/// Holds statistics for one function (or other entity that has a PC range and
/// contains variables, such as a compile unit).
struct PerFunctionStats {
/// Number of inlined instances of this function.
uint64_t NumFnInlined = 0;
/// Number of out-of-line instances of this function.
uint64_t NumFnOutOfLine = 0;
/// Number of inlined instances that have abstract origins.
uint64_t NumAbstractOrigins = 0;
/// Number of variables and parameters with location across all inlined
/// instances.
uint64_t TotalVarWithLoc = 0;
/// Number of constants with location across all inlined instances.
uint64_t ConstantMembers = 0;
/// Number of arificial variables, parameters or members across all instances.
uint64_t NumArtificial = 0;
/// List of all Variables and parameters in this function.
StringSet<> VarsInFunction;
/// Compile units also cover a PC range, but have this flag set to false.
bool IsFunction = false;
/// Function has source location information.
bool HasSourceLocation = false;
/// Number of function parameters.
uint64_t NumParams = 0;
/// Number of function parameters with source location.
uint64_t NumParamSourceLocations = 0;
/// Number of function parameters with type.
uint64_t NumParamTypes = 0;
/// Number of function parameters with a DW_AT_location.
uint64_t NumParamLocations = 0;
/// Number of local variables.
uint64_t NumLocalVars = 0;
/// Number of local variables with source location.
uint64_t NumLocalVarSourceLocations = 0;
/// Number of local variables with type.
uint64_t NumLocalVarTypes = 0;
/// Number of local variables with DW_AT_location.
uint64_t NumLocalVarLocations = 0;
};
/// Holds accumulated global statistics about DIEs.
struct GlobalStats {
/// Total number of PC range bytes covered by DW_AT_locations.
SaturatingUINT64 TotalBytesCovered = 0;
/// Total number of parent DIE PC range bytes covered by DW_AT_Locations.
SaturatingUINT64 ScopeBytesCovered = 0;
/// Total number of PC range bytes in each variable's enclosing scope.
SaturatingUINT64 ScopeBytes = 0;
/// Total number of PC range bytes covered by DW_AT_locations with
/// the debug entry values (DW_OP_entry_value).
SaturatingUINT64 ScopeEntryValueBytesCovered = 0;
/// Total number of PC range bytes covered by DW_AT_locations of
/// formal parameters.
SaturatingUINT64 ParamScopeBytesCovered = 0;
/// Total number of PC range bytes in each parameter's enclosing scope.
SaturatingUINT64 ParamScopeBytes = 0;
/// Total number of PC range bytes covered by DW_AT_locations with
/// the debug entry values (DW_OP_entry_value) (only for parameters).
SaturatingUINT64 ParamScopeEntryValueBytesCovered = 0;
/// Total number of PC range bytes covered by DW_AT_locations (only for local
/// variables).
SaturatingUINT64 LocalVarScopeBytesCovered = 0;
/// Total number of PC range bytes in each local variable's enclosing scope.
SaturatingUINT64 LocalVarScopeBytes = 0;
/// Total number of PC range bytes covered by DW_AT_locations with
/// the debug entry values (DW_OP_entry_value) (only for local variables).
SaturatingUINT64 LocalVarScopeEntryValueBytesCovered = 0;
/// Total number of call site entries (DW_AT_call_file & DW_AT_call_line).
SaturatingUINT64 CallSiteEntries = 0;
/// Total number of call site DIEs (DW_TAG_call_site).
SaturatingUINT64 CallSiteDIEs = 0;
/// Total number of call site parameter DIEs (DW_TAG_call_site_parameter).
SaturatingUINT64 CallSiteParamDIEs = 0;
/// Total byte size of concrete functions. This byte size includes
/// inline functions contained in the concrete functions.
SaturatingUINT64 FunctionSize = 0;
/// Total byte size of inlined functions. This is the total number of bytes
/// for the top inline functions within concrete functions. This can help
/// tune the inline settings when compiling to match user expectations.
SaturatingUINT64 InlineFunctionSize = 0;
};
/// Holds accumulated debug location statistics about local variables and
/// formal parameters.
struct LocationStats {
/// Map the scope coverage decile to the number of variables in the decile.
/// The first element of the array (at the index zero) represents the number
/// of variables with the no debug location at all, but the last element
/// in the vector represents the number of fully covered variables within
/// its scope.
std::vector<SaturatingUINT64> VarParamLocStats{
std::vector<SaturatingUINT64>(NumOfCoverageCategories, 0)};
/// Map non debug entry values coverage.
std::vector<SaturatingUINT64> VarParamNonEntryValLocStats{
std::vector<SaturatingUINT64>(NumOfCoverageCategories, 0)};
/// The debug location statistics for formal parameters.
std::vector<SaturatingUINT64> ParamLocStats{
std::vector<SaturatingUINT64>(NumOfCoverageCategories, 0)};
/// Map non debug entry values coverage for formal parameters.
std::vector<SaturatingUINT64> ParamNonEntryValLocStats{
std::vector<SaturatingUINT64>(NumOfCoverageCategories, 0)};
/// The debug location statistics for local variables.
std::vector<SaturatingUINT64> LocalVarLocStats{
std::vector<SaturatingUINT64>(NumOfCoverageCategories, 0)};
/// Map non debug entry values coverage for local variables.
std::vector<SaturatingUINT64> LocalVarNonEntryValLocStats{
std::vector<SaturatingUINT64>(NumOfCoverageCategories, 0)};
/// Total number of local variables and function parameters processed.
SaturatingUINT64 NumVarParam = 0;
/// Total number of formal parameters processed.
SaturatingUINT64 NumParam = 0;
/// Total number of local variables processed.
SaturatingUINT64 NumVar = 0;
};
} // namespace
/// Collect debug location statistics for one DIE.
static void collectLocStats(uint64_t ScopeBytesCovered, uint64_t BytesInScope,
std::vector<SaturatingUINT64> &VarParamLocStats,
std::vector<SaturatingUINT64> &ParamLocStats,
std::vector<SaturatingUINT64> &LocalVarLocStats,
bool IsParam, bool IsLocalVar) {
auto getCoverageBucket = [ScopeBytesCovered, BytesInScope]() -> unsigned {
// No debug location at all for the variable.
if (ScopeBytesCovered == 0)
return 0;
// Fully covered variable within its scope.
if (ScopeBytesCovered >= BytesInScope)
return NumOfCoverageCategories - 1;
// Get covered range (e.g. 20%-29%).
unsigned LocBucket = 100 * (double)ScopeBytesCovered / BytesInScope;
LocBucket /= 10;
return LocBucket + 1;
};
unsigned CoverageBucket = getCoverageBucket();
VarParamLocStats[CoverageBucket].Value++;
if (IsParam)
ParamLocStats[CoverageBucket].Value++;
else if (IsLocalVar)
LocalVarLocStats[CoverageBucket].Value++;
}
/// Construct an identifier for a given DIE from its Prefix, Name, DeclFileName
/// and DeclLine. The identifier aims to be unique for any unique entities,
/// but keeping the same among different instances of the same entity.
static std::string constructDieID(DWARFDie Die,
StringRef Prefix = StringRef()) {
std::string IDStr;
llvm::raw_string_ostream ID(IDStr);
ID << Prefix
<< Die.getName(DINameKind::LinkageName);
// Prefix + Name is enough for local variables and parameters.
if (!Prefix.empty() && !Prefix.equals("g"))
return ID.str();
auto DeclFile = Die.findRecursively(dwarf::DW_AT_decl_file);
std::string File;
if (DeclFile) {
DWARFUnit *U = Die.getDwarfUnit();
if (const auto *LT = U->getContext().getLineTableForUnit(U))
if (LT->getFileNameByIndex(
dwarf::toUnsigned(DeclFile, 0), U->getCompilationDir(),
DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, File))
File = std::string(sys::path::filename(File));
}
ID << ":" << (File.empty() ? "/" : File);
ID << ":"
<< dwarf::toUnsigned(Die.findRecursively(dwarf::DW_AT_decl_line), 0);
return ID.str();
}
/// Return the number of bytes in the overlap of ranges A and B.
static uint64_t calculateOverlap(DWARFAddressRange A, DWARFAddressRange B) {
uint64_t Lower = std::max(A.LowPC, B.LowPC);
uint64_t Upper = std::min(A.HighPC, B.HighPC);
if (Lower >= Upper)
return 0;
return Upper - Lower;
}
/// Collect debug info quality metrics for one DIE.
static void collectStatsForDie(DWARFDie Die, const std::string &FnPrefix,
const std::string &VarPrefix,
uint64_t BytesInScope, uint32_t InlineDepth,
StringMap<PerFunctionStats> &FnStatMap,
GlobalStats &GlobalStats,
LocationStats &LocStats,
AbstractOriginVarsTy *AbstractOriginVariables) {
const dwarf::Tag Tag = Die.getTag();
// Skip CU node.
if (Tag == dwarf::DW_TAG_compile_unit)
return;
bool HasLoc = false;
bool HasSrcLoc = false;
bool HasType = false;
uint64_t TotalBytesCovered = 0;
uint64_t ScopeBytesCovered = 0;
uint64_t BytesEntryValuesCovered = 0;
auto &FnStats = FnStatMap[FnPrefix];
bool IsParam = Tag == dwarf::DW_TAG_formal_parameter;
bool IsLocalVar = Tag == dwarf::DW_TAG_variable;
bool IsConstantMember = Tag == dwarf::DW_TAG_member &&
Die.find(dwarf::DW_AT_const_value);
// For zero covered inlined variables the locstats will be
// calculated later.
bool DeferLocStats = false;
if (Tag == dwarf::DW_TAG_call_site || Tag == dwarf::DW_TAG_GNU_call_site) {
GlobalStats.CallSiteDIEs++;
return;
}
if (Tag == dwarf::DW_TAG_call_site_parameter ||
Tag == dwarf::DW_TAG_GNU_call_site_parameter) {
GlobalStats.CallSiteParamDIEs++;
return;
}
if (!IsParam && !IsLocalVar && !IsConstantMember) {
// Not a variable or constant member.
return;
}
// Ignore declarations of global variables.
if (IsLocalVar && Die.find(dwarf::DW_AT_declaration))
return;
if (Die.findRecursively(dwarf::DW_AT_decl_file) &&
Die.findRecursively(dwarf::DW_AT_decl_line))
HasSrcLoc = true;
if (Die.findRecursively(dwarf::DW_AT_type))
HasType = true;
if (Die.find(dwarf::DW_AT_abstract_origin)) {
if (Die.find(dwarf::DW_AT_location) || Die.find(dwarf::DW_AT_const_value)) {
if (AbstractOriginVariables) {
auto Offset = Die.find(dwarf::DW_AT_abstract_origin);
// Do not track this variable any more, since it has location
// coverage.
llvm::erase_value(*AbstractOriginVariables, (*Offset).getRawUValue());
}
} else {
// The locstats will be handled at the end of
// the collectStatsRecursive().
DeferLocStats = true;
}
}
auto IsEntryValue = [&](ArrayRef<uint8_t> D) -> bool {
DWARFUnit *U = Die.getDwarfUnit();
DataExtractor Data(toStringRef(D),
Die.getDwarfUnit()->getContext().isLittleEndian(), 0);
DWARFExpression Expression(Data, U->getAddressByteSize(),
U->getFormParams().Format);
// Consider the expression containing the DW_OP_entry_value as
// an entry value.
return llvm::any_of(Expression, [](const DWARFExpression::Operation &Op) {
return Op.getCode() == dwarf::DW_OP_entry_value ||
Op.getCode() == dwarf::DW_OP_GNU_entry_value;
});
};
if (Die.find(dwarf::DW_AT_const_value)) {
// This catches constant members *and* variables.
HasLoc = true;
ScopeBytesCovered = BytesInScope;
TotalBytesCovered = BytesInScope;
} else {
// Handle variables and function arguments.
Expected<std::vector<DWARFLocationExpression>> Loc =
Die.getLocations(dwarf::DW_AT_location);
if (!Loc) {
consumeError(Loc.takeError());
} else {
HasLoc = true;
// Get PC coverage.
auto Default = find_if(
*Loc, [](const DWARFLocationExpression &L) { return !L.Range; });
if (Default != Loc->end()) {
// Assume the entire range is covered by a single location.
ScopeBytesCovered = BytesInScope;
TotalBytesCovered = BytesInScope;
} else {
// Caller checks this Expected result already, it cannot fail.
auto ScopeRanges = cantFail(Die.getParent().getAddressRanges());
for (auto Entry : *Loc) {
TotalBytesCovered += Entry.Range->HighPC - Entry.Range->LowPC;
uint64_t ScopeBytesCoveredByEntry = 0;
// Calculate how many bytes of the parent scope this entry covers.
// FIXME: In section 2.6.2 of the DWARFv5 spec it says that "The
// address ranges defined by the bounded location descriptions of a
// location list may overlap". So in theory a variable can have
// multiple simultaneous locations, which would make this calculation
// misleading because we will count the overlapped areas
// twice. However, clang does not currently emit DWARF like this.
for (DWARFAddressRange R : ScopeRanges) {
ScopeBytesCoveredByEntry += calculateOverlap(*Entry.Range, R);
}
ScopeBytesCovered += ScopeBytesCoveredByEntry;
if (IsEntryValue(Entry.Expr))
BytesEntryValuesCovered += ScopeBytesCoveredByEntry;
}
}
}
}
// Calculate the debug location statistics.
if (BytesInScope && !DeferLocStats) {
LocStats.NumVarParam.Value++;
if (IsParam)
LocStats.NumParam.Value++;
else if (IsLocalVar)
LocStats.NumVar.Value++;
collectLocStats(ScopeBytesCovered, BytesInScope, LocStats.VarParamLocStats,
LocStats.ParamLocStats, LocStats.LocalVarLocStats, IsParam,
IsLocalVar);
// Non debug entry values coverage statistics.
collectLocStats(ScopeBytesCovered - BytesEntryValuesCovered, BytesInScope,
LocStats.VarParamNonEntryValLocStats,
LocStats.ParamNonEntryValLocStats,
LocStats.LocalVarNonEntryValLocStats, IsParam, IsLocalVar);
}
// Collect PC range coverage data.
if (DWARFDie D =
Die.getAttributeValueAsReferencedDie(dwarf::DW_AT_abstract_origin))
Die = D;
std::string VarID = constructDieID(Die, VarPrefix);
FnStats.VarsInFunction.insert(VarID);
GlobalStats.TotalBytesCovered += TotalBytesCovered;
if (BytesInScope) {
GlobalStats.ScopeBytesCovered += ScopeBytesCovered;
GlobalStats.ScopeBytes += BytesInScope;
GlobalStats.ScopeEntryValueBytesCovered += BytesEntryValuesCovered;
if (IsParam) {
GlobalStats.ParamScopeBytesCovered += ScopeBytesCovered;
GlobalStats.ParamScopeBytes += BytesInScope;
GlobalStats.ParamScopeEntryValueBytesCovered += BytesEntryValuesCovered;
} else if (IsLocalVar) {
GlobalStats.LocalVarScopeBytesCovered += ScopeBytesCovered;
GlobalStats.LocalVarScopeBytes += BytesInScope;
GlobalStats.LocalVarScopeEntryValueBytesCovered +=
BytesEntryValuesCovered;
}
assert(GlobalStats.ScopeBytesCovered.Value <= GlobalStats.ScopeBytes.Value);
}
if (IsConstantMember) {
FnStats.ConstantMembers++;
return;
}
FnStats.TotalVarWithLoc += (unsigned)HasLoc;
if (Die.find(dwarf::DW_AT_artificial)) {
FnStats.NumArtificial++;
return;
}
if (IsParam) {
FnStats.NumParams++;
if (HasType)
FnStats.NumParamTypes++;
if (HasSrcLoc)
FnStats.NumParamSourceLocations++;
if (HasLoc)
FnStats.NumParamLocations++;
} else if (IsLocalVar) {
FnStats.NumLocalVars++;
if (HasType)
FnStats.NumLocalVarTypes++;
if (HasSrcLoc)
FnStats.NumLocalVarSourceLocations++;
if (HasLoc)
FnStats.NumLocalVarLocations++;
}
}
/// Recursively collect variables from subprogram with DW_AT_inline attribute.
static void collectAbstractOriginFnInfo(
DWARFDie Die, uint64_t SPOffset,
AbstractOriginVarsTyMap &GlobalAbstractOriginFnInfo,
AbstractOriginVarsTyMap &LocalAbstractOriginFnInfo) {
DWARFDie Child = Die.getFirstChild();
while (Child) {
const dwarf::Tag ChildTag = Child.getTag();
if (ChildTag == dwarf::DW_TAG_formal_parameter ||
ChildTag == dwarf::DW_TAG_variable) {
GlobalAbstractOriginFnInfo[SPOffset].push_back(Child.getOffset());
LocalAbstractOriginFnInfo[SPOffset].push_back(Child.getOffset());
} else if (ChildTag == dwarf::DW_TAG_lexical_block)
collectAbstractOriginFnInfo(Child, SPOffset, GlobalAbstractOriginFnInfo,
LocalAbstractOriginFnInfo);
Child = Child.getSibling();
}
}
/// Recursively collect debug info quality metrics.
static void collectStatsRecursive(
DWARFDie Die, std::string FnPrefix, std::string VarPrefix,
uint64_t BytesInScope, uint32_t InlineDepth,
StringMap<PerFunctionStats> &FnStatMap, GlobalStats &GlobalStats,
LocationStats &LocStats, FunctionDIECUTyMap &AbstractOriginFnCUs,
AbstractOriginVarsTyMap &GlobalAbstractOriginFnInfo,
AbstractOriginVarsTyMap &LocalAbstractOriginFnInfo,
FunctionsWithAbstractOriginTy &FnsWithAbstractOriginToBeProcessed,
AbstractOriginVarsTy *AbstractOriginVarsPtr = nullptr) {
// Skip NULL nodes.
if (Die.isNULL())
return;
const dwarf::Tag Tag = Die.getTag();
// Skip function types.
if (Tag == dwarf::DW_TAG_subroutine_type)
return;
// Handle any kind of lexical scope.
const bool HasAbstractOrigin = Die.find(dwarf::DW_AT_abstract_origin) != None;
const bool IsFunction = Tag == dwarf::DW_TAG_subprogram;
const bool IsBlock = Tag == dwarf::DW_TAG_lexical_block;
const bool IsInlinedFunction = Tag == dwarf::DW_TAG_inlined_subroutine;
// We want to know how many variables (with abstract_origin) don't have
// location info.
const bool IsCandidateForZeroLocCovTracking =
(IsInlinedFunction || (IsFunction && HasAbstractOrigin));
AbstractOriginVarsTy AbstractOriginVars;
// Get the vars of the inlined fn, so the locstats
// reports the missing vars (with coverage 0%).
if (IsCandidateForZeroLocCovTracking) {
auto OffsetFn = Die.find(dwarf::DW_AT_abstract_origin);
if (OffsetFn) {
uint64_t OffsetOfInlineFnCopy = (*OffsetFn).getRawUValue();
if (LocalAbstractOriginFnInfo.count(OffsetOfInlineFnCopy)) {
AbstractOriginVars = LocalAbstractOriginFnInfo[OffsetOfInlineFnCopy];
AbstractOriginVarsPtr = &AbstractOriginVars;
} else {
// This means that the DW_AT_inline fn copy is out of order
// or that the abstract_origin references another CU,
// so this abstract origin instance will be processed later.
FnsWithAbstractOriginToBeProcessed.push_back(Die.getOffset());
AbstractOriginVarsPtr = nullptr;
}
}
}
if (IsFunction || IsInlinedFunction || IsBlock) {
// Reset VarPrefix when entering a new function.
if (IsFunction || IsInlinedFunction)
VarPrefix = "v";
// Ignore forward declarations.
if (Die.find(dwarf::DW_AT_declaration))
return;
// Check for call sites.
if (Die.find(dwarf::DW_AT_call_file) && Die.find(dwarf::DW_AT_call_line))
GlobalStats.CallSiteEntries++;
// PC Ranges.
auto RangesOrError = Die.getAddressRanges();
if (!RangesOrError) {
llvm::consumeError(RangesOrError.takeError());
return;
}
auto Ranges = RangesOrError.get();
uint64_t BytesInThisScope = 0;
for (auto Range : Ranges)
BytesInThisScope += Range.HighPC - Range.LowPC;
// Count the function.
if (!IsBlock) {
// Skip over abstract origins, but collect variables
// from it so it can be used for location statistics
// for inlined instancies.
if (Die.find(dwarf::DW_AT_inline)) {
uint64_t SPOffset = Die.getOffset();
AbstractOriginFnCUs[SPOffset] = Die.getDwarfUnit();
collectAbstractOriginFnInfo(Die, SPOffset, GlobalAbstractOriginFnInfo,
LocalAbstractOriginFnInfo);
return;
}
std::string FnID = constructDieID(Die);
// We've seen an instance of this function.
auto &FnStats = FnStatMap[FnID];
FnStats.IsFunction = true;
if (IsInlinedFunction) {
FnStats.NumFnInlined++;
if (Die.findRecursively(dwarf::DW_AT_abstract_origin))
FnStats.NumAbstractOrigins++;
} else {
FnStats.NumFnOutOfLine++;
}
if (Die.findRecursively(dwarf::DW_AT_decl_file) &&
Die.findRecursively(dwarf::DW_AT_decl_line))
FnStats.HasSourceLocation = true;
// Update function prefix.
FnPrefix = FnID;
}
if (BytesInThisScope) {
BytesInScope = BytesInThisScope;
if (IsFunction)
GlobalStats.FunctionSize += BytesInThisScope;
else if (IsInlinedFunction && InlineDepth == 0)
GlobalStats.InlineFunctionSize += BytesInThisScope;
}
} else {
// Not a scope, visit the Die itself. It could be a variable.
collectStatsForDie(Die, FnPrefix, VarPrefix, BytesInScope, InlineDepth,
FnStatMap, GlobalStats, LocStats, AbstractOriginVarsPtr);
}
// Set InlineDepth correctly for child recursion
if (IsFunction)
InlineDepth = 0;
else if (IsInlinedFunction)
++InlineDepth;
// Traverse children.
unsigned LexicalBlockIndex = 0;
unsigned FormalParameterIndex = 0;
DWARFDie Child = Die.getFirstChild();
while (Child) {
std::string ChildVarPrefix = VarPrefix;
if (Child.getTag() == dwarf::DW_TAG_lexical_block)
ChildVarPrefix += toHex(LexicalBlockIndex++) + '.';
if (Child.getTag() == dwarf::DW_TAG_formal_parameter)
ChildVarPrefix += 'p' + toHex(FormalParameterIndex++) + '.';
collectStatsRecursive(
Child, FnPrefix, ChildVarPrefix, BytesInScope, InlineDepth, FnStatMap,
GlobalStats, LocStats, AbstractOriginFnCUs, GlobalAbstractOriginFnInfo,
LocalAbstractOriginFnInfo, FnsWithAbstractOriginToBeProcessed,
AbstractOriginVarsPtr);
Child = Child.getSibling();
}
if (!IsCandidateForZeroLocCovTracking)
return;
// After we have processed all vars of the inlined function (or function with
// an abstract_origin), we want to know how many variables have no location.
for (auto Offset : AbstractOriginVars) {
LocStats.NumVarParam++;
LocStats.VarParamLocStats[ZeroCoverageBucket]++;
auto FnDie = Die.getDwarfUnit()->getDIEForOffset(Offset);
if (!FnDie)
continue;
auto Tag = FnDie.getTag();
if (Tag == dwarf::DW_TAG_formal_parameter) {
LocStats.NumParam++;
LocStats.ParamLocStats[ZeroCoverageBucket]++;
} else if (Tag == dwarf::DW_TAG_variable) {
LocStats.NumVar++;
LocStats.LocalVarLocStats[ZeroCoverageBucket]++;
}
}
}
/// Print human-readable output.
/// \{
static void printDatum(json::OStream &J, const char *Key, json::Value Value) {
if (Value == OverflowValue)
J.attribute(Key, "overflowed");
else
J.attribute(Key, Value);
LLVM_DEBUG(llvm::dbgs() << Key << ": " << Value << '\n');
}
static void printLocationStats(json::OStream &J, const char *Key,
std::vector<SaturatingUINT64> &LocationStats) {
if (LocationStats[0].Value == OverflowValue)
J.attribute((Twine(Key) +
" with (0%,10%) of parent scope covered by DW_AT_location")
.str(),
"overflowed");
else
J.attribute(
(Twine(Key) + " with 0% of parent scope covered by DW_AT_location")
.str(),
LocationStats[0].Value);
LLVM_DEBUG(
llvm::dbgs() << Key
<< " with 0% of parent scope covered by DW_AT_location: \\"
<< LocationStats[0].Value << '\n');
if (LocationStats[1].Value == OverflowValue)
J.attribute((Twine(Key) +
" with (0%,10%) of parent scope covered by DW_AT_location")
.str(),
"overflowed");
else
J.attribute((Twine(Key) +
" with (0%,10%) of parent scope covered by DW_AT_location")
.str(),
LocationStats[1].Value);
LLVM_DEBUG(llvm::dbgs()
<< Key
<< " with (0%,10%) of parent scope covered by DW_AT_location: "
<< LocationStats[1].Value << '\n');
for (unsigned i = 2; i < NumOfCoverageCategories - 1; ++i) {
if (LocationStats[i].Value == OverflowValue)
J.attribute((Twine(Key) + " with [" + Twine((i - 1) * 10) + "%," +
Twine(i * 10) +
"%) of parent scope covered by DW_AT_location")
.str(),
"overflowed");
else
J.attribute((Twine(Key) + " with [" + Twine((i - 1) * 10) + "%," +
Twine(i * 10) +
"%) of parent scope covered by DW_AT_location")
.str(),
LocationStats[i].Value);
LLVM_DEBUG(llvm::dbgs()
<< Key << " with [" << (i - 1) * 10 << "%," << i * 10
<< "%) of parent scope covered by DW_AT_location: "
<< LocationStats[i].Value);
}
if (LocationStats[NumOfCoverageCategories - 1].Value == OverflowValue)
J.attribute(
(Twine(Key) + " with 100% of parent scope covered by DW_AT_location")
.str(),
"overflowed");
else
J.attribute(
(Twine(Key) + " with 100% of parent scope covered by DW_AT_location")
.str(),
LocationStats[NumOfCoverageCategories - 1].Value);
LLVM_DEBUG(
llvm::dbgs() << Key
<< " with 100% of parent scope covered by DW_AT_location: "
<< LocationStats[NumOfCoverageCategories - 1].Value);
}
static void printSectionSizes(json::OStream &J, const SectionSizes &Sizes) {
for (const auto &It : Sizes.DebugSectionSizes)
J.attribute((Twine("#bytes in ") + It.first).str(), int64_t(It.second));
}
/// Stop tracking variables that contain abstract_origin with a location.
/// This is used for out-of-order DW_AT_inline subprograms only.
static void updateVarsWithAbstractOriginLocCovInfo(
DWARFDie FnDieWithAbstractOrigin,
AbstractOriginVarsTy &AbstractOriginVars) {
DWARFDie Child = FnDieWithAbstractOrigin.getFirstChild();
while (Child) {
const dwarf::Tag ChildTag = Child.getTag();
if ((ChildTag == dwarf::DW_TAG_formal_parameter ||
ChildTag == dwarf::DW_TAG_variable) &&
(Child.find(dwarf::DW_AT_location) ||
Child.find(dwarf::DW_AT_const_value))) {
auto OffsetVar = Child.find(dwarf::DW_AT_abstract_origin);
if (OffsetVar)
llvm::erase_value(AbstractOriginVars, (*OffsetVar).getRawUValue());
} else if (ChildTag == dwarf::DW_TAG_lexical_block)
updateVarsWithAbstractOriginLocCovInfo(Child, AbstractOriginVars);
Child = Child.getSibling();
}
}
/// Collect zero location coverage for inlined variables which refer to
/// a DW_AT_inline copy of subprogram that is out of order in the DWARF.
/// Also cover the variables of a concrete function (represented with
/// the DW_TAG_subprogram) with an abstract_origin attribute.
static void collectZeroLocCovForVarsWithAbstractOrigin(
DWARFUnit *DwUnit, GlobalStats &GlobalStats, LocationStats &LocStats,
AbstractOriginVarsTyMap &LocalAbstractOriginFnInfo,
FunctionsWithAbstractOriginTy &FnsWithAbstractOriginToBeProcessed) {
// The next variable is used to filter out functions that have been processed,
// leaving FnsWithAbstractOriginToBeProcessed with just CrossCU references.
FunctionsWithAbstractOriginTy ProcessedFns;
for (auto FnOffset : FnsWithAbstractOriginToBeProcessed) {
DWARFDie FnDieWithAbstractOrigin = DwUnit->getDIEForOffset(FnOffset);
auto FnCopy = FnDieWithAbstractOrigin.find(dwarf::DW_AT_abstract_origin);
AbstractOriginVarsTy AbstractOriginVars;
if (!FnCopy)
continue;
uint64_t FnCopyRawUValue = (*FnCopy).getRawUValue();
// If there is no entry within LocalAbstractOriginFnInfo for the given
// FnCopyRawUValue, function isn't out-of-order in DWARF. Rather, we have
// CrossCU referencing.
if (!LocalAbstractOriginFnInfo.count(FnCopyRawUValue))
continue;
AbstractOriginVars = LocalAbstractOriginFnInfo[FnCopyRawUValue];
updateVarsWithAbstractOriginLocCovInfo(FnDieWithAbstractOrigin,
AbstractOriginVars);
for (auto Offset : AbstractOriginVars) {
LocStats.NumVarParam++;
LocStats.VarParamLocStats[ZeroCoverageBucket]++;
auto Tag = DwUnit->getDIEForOffset(Offset).getTag();
if (Tag == dwarf::DW_TAG_formal_parameter) {
LocStats.NumParam++;
LocStats.ParamLocStats[ZeroCoverageBucket]++;
} else if (Tag == dwarf::DW_TAG_variable) {
LocStats.NumVar++;
LocStats.LocalVarLocStats[ZeroCoverageBucket]++;
}
}
ProcessedFns.push_back(FnOffset);
}
for (auto ProcessedFn : ProcessedFns)
llvm::erase_value(FnsWithAbstractOriginToBeProcessed, ProcessedFn);
}
/// Collect zero location coverage for inlined variables which refer to
/// a DW_AT_inline copy of subprogram that is in a different CU.
static void collectZeroLocCovForVarsWithCrossCUReferencingAbstractOrigin(
LocationStats &LocStats, FunctionDIECUTyMap AbstractOriginFnCUs,
AbstractOriginVarsTyMap &GlobalAbstractOriginFnInfo,
CrossCUReferencingDIELocationTy &CrossCUReferencesToBeResolved) {
for (const auto &CrossCUReferenceToBeResolved :
CrossCUReferencesToBeResolved) {
DWARFUnit *DwUnit = CrossCUReferenceToBeResolved.DwUnit;
DWARFDie FnDIEWithCrossCUReferencing =
DwUnit->getDIEForOffset(CrossCUReferenceToBeResolved.DIEOffset);
auto FnCopy =
FnDIEWithCrossCUReferencing.find(dwarf::DW_AT_abstract_origin);
if (!FnCopy)
continue;
uint64_t FnCopyRawUValue = (*FnCopy).getRawUValue();
AbstractOriginVarsTy AbstractOriginVars =
GlobalAbstractOriginFnInfo[FnCopyRawUValue];
updateVarsWithAbstractOriginLocCovInfo(FnDIEWithCrossCUReferencing,
AbstractOriginVars);
for (auto Offset : AbstractOriginVars) {
LocStats.NumVarParam++;
LocStats.VarParamLocStats[ZeroCoverageBucket]++;
auto Tag = (AbstractOriginFnCUs[FnCopyRawUValue])
->getDIEForOffset(Offset)
.getTag();
if (Tag == dwarf::DW_TAG_formal_parameter) {
LocStats.NumParam++;
LocStats.ParamLocStats[ZeroCoverageBucket]++;
} else if (Tag == dwarf::DW_TAG_variable) {
LocStats.NumVar++;
LocStats.LocalVarLocStats[ZeroCoverageBucket]++;
}
}
}
}
/// \}
/// Collect debug info quality metrics for an entire DIContext.
///
/// Do the impossible and reduce the quality of the debug info down to a few
/// numbers. The idea is to condense the data into numbers that can be tracked
/// over time to identify trends in newer compiler versions and gauge the effect
/// of particular optimizations. The raw numbers themselves are not particularly
/// useful, only the delta between compiling the same program with different
/// compilers is.
bool dwarfdump::collectStatsForObjectFile(ObjectFile &Obj, DWARFContext &DICtx,
const Twine &Filename,
raw_ostream &OS) {
StringRef FormatName = Obj.getFileFormatName();
GlobalStats GlobalStats;
LocationStats LocStats;
StringMap<PerFunctionStats> Statistics;
// This variable holds variable information for functions with
// abstract_origin globally, across all CUs.
AbstractOriginVarsTyMap GlobalAbstractOriginFnInfo;
// This variable holds information about the CU of a function with
// abstract_origin.
FunctionDIECUTyMap AbstractOriginFnCUs;
CrossCUReferencingDIELocationTy CrossCUReferencesToBeResolved;
for (const auto &CU : static_cast<DWARFContext *>(&DICtx)->compile_units()) {
if (DWARFDie CUDie = CU->getNonSkeletonUnitDIE(false)) {
// This variable holds variable information for functions with
// abstract_origin, but just for the current CU.
AbstractOriginVarsTyMap LocalAbstractOriginFnInfo;
FunctionsWithAbstractOriginTy FnsWithAbstractOriginToBeProcessed;
collectStatsRecursive(
CUDie, "/", "g", 0, 0, Statistics, GlobalStats, LocStats,
AbstractOriginFnCUs, GlobalAbstractOriginFnInfo,
LocalAbstractOriginFnInfo, FnsWithAbstractOriginToBeProcessed);
// collectZeroLocCovForVarsWithAbstractOrigin will filter out all
// out-of-order DWARF functions that have been processed within it,
// leaving FnsWithAbstractOriginToBeProcessed with only CrossCU
// references.
collectZeroLocCovForVarsWithAbstractOrigin(
CUDie.getDwarfUnit(), GlobalStats, LocStats,
LocalAbstractOriginFnInfo, FnsWithAbstractOriginToBeProcessed);
// Collect all CrossCU references into CrossCUReferencesToBeResolved.
for (auto CrossCUReferencingDIEOffset :
FnsWithAbstractOriginToBeProcessed)
CrossCUReferencesToBeResolved.push_back(
DIELocation(CUDie.getDwarfUnit(), CrossCUReferencingDIEOffset));
}
}
/// Resolve CrossCU references.
collectZeroLocCovForVarsWithCrossCUReferencingAbstractOrigin(
LocStats, AbstractOriginFnCUs, GlobalAbstractOriginFnInfo,
CrossCUReferencesToBeResolved);
/// Collect the sizes of debug sections.
SectionSizes Sizes;
calculateSectionSizes(Obj, Sizes, Filename);
/// The version number should be increased every time the algorithm is changed
/// (including bug fixes). New metrics may be added without increasing the
/// version.
unsigned Version = 9;
SaturatingUINT64 VarParamTotal = 0;
SaturatingUINT64 VarParamUnique = 0;
SaturatingUINT64 VarParamWithLoc = 0;
SaturatingUINT64 NumFunctions = 0;
SaturatingUINT64 NumInlinedFunctions = 0;
SaturatingUINT64 NumFuncsWithSrcLoc = 0;
SaturatingUINT64 NumAbstractOrigins = 0;
SaturatingUINT64 ParamTotal = 0;
SaturatingUINT64 ParamWithType = 0;
SaturatingUINT64 ParamWithLoc = 0;
SaturatingUINT64 ParamWithSrcLoc = 0;
SaturatingUINT64 LocalVarTotal = 0;
SaturatingUINT64 LocalVarWithType = 0;
SaturatingUINT64 LocalVarWithSrcLoc = 0;
SaturatingUINT64 LocalVarWithLoc = 0;
for (auto &Entry : Statistics) {
PerFunctionStats &Stats = Entry.getValue();
uint64_t TotalVars = Stats.VarsInFunction.size() *
(Stats.NumFnInlined + Stats.NumFnOutOfLine);
// Count variables in global scope.
if (!Stats.IsFunction)
TotalVars =
Stats.NumLocalVars + Stats.ConstantMembers + Stats.NumArtificial;
uint64_t Constants = Stats.ConstantMembers;
VarParamWithLoc += Stats.TotalVarWithLoc + Constants;
VarParamTotal += TotalVars;
VarParamUnique += Stats.VarsInFunction.size();
LLVM_DEBUG(for (auto &V
: Stats.VarsInFunction) llvm::dbgs()
<< Entry.getKey() << ": " << V.getKey() << "\n");
NumFunctions += Stats.IsFunction;
NumFuncsWithSrcLoc += Stats.HasSourceLocation;
NumInlinedFunctions += Stats.IsFunction * Stats.NumFnInlined;
NumAbstractOrigins += Stats.IsFunction * Stats.NumAbstractOrigins;
ParamTotal += Stats.NumParams;
ParamWithType += Stats.NumParamTypes;
ParamWithLoc += Stats.NumParamLocations;
ParamWithSrcLoc += Stats.NumParamSourceLocations;
LocalVarTotal += Stats.NumLocalVars;
LocalVarWithType += Stats.NumLocalVarTypes;
LocalVarWithLoc += Stats.NumLocalVarLocations;
LocalVarWithSrcLoc += Stats.NumLocalVarSourceLocations;
}
// Print summary.
OS.SetBufferSize(1024);
json::OStream J(OS, 2);
J.objectBegin();
J.attribute("version", Version);
LLVM_DEBUG(llvm::dbgs() << "Variable location quality metrics\n";
llvm::dbgs() << "---------------------------------\n");
printDatum(J, "file", Filename.str());
printDatum(J, "format", FormatName);
printDatum(J, "#functions", NumFunctions.Value);
printDatum(J, "#functions with location", NumFuncsWithSrcLoc.Value);
printDatum(J, "#inlined functions", NumInlinedFunctions.Value);
printDatum(J, "#inlined functions with abstract origins",
NumAbstractOrigins.Value);
// This includes local variables and formal parameters.
printDatum(J, "#unique source variables", VarParamUnique.Value);
printDatum(J, "#source variables", VarParamTotal.Value);
printDatum(J, "#source variables with location", VarParamWithLoc.Value);
printDatum(J, "#call site entries", GlobalStats.CallSiteEntries.Value);
printDatum(J, "#call site DIEs", GlobalStats.CallSiteDIEs.Value);
printDatum(J, "#call site parameter DIEs",
GlobalStats.CallSiteParamDIEs.Value);
printDatum(J, "sum_all_variables(#bytes in parent scope)",
GlobalStats.ScopeBytes.Value);
printDatum(J,
"sum_all_variables(#bytes in any scope covered by DW_AT_location)",
GlobalStats.TotalBytesCovered.Value);
printDatum(J,
"sum_all_variables(#bytes in parent scope covered by "
"DW_AT_location)",
GlobalStats.ScopeBytesCovered.Value);
printDatum(J,
"sum_all_variables(#bytes in parent scope covered by "
"DW_OP_entry_value)",
GlobalStats.ScopeEntryValueBytesCovered.Value);
printDatum(J, "sum_all_params(#bytes in parent scope)",
GlobalStats.ParamScopeBytes.Value);
printDatum(J,
"sum_all_params(#bytes in parent scope covered by DW_AT_location)",
GlobalStats.ParamScopeBytesCovered.Value);
printDatum(J,
"sum_all_params(#bytes in parent scope covered by "
"DW_OP_entry_value)",
GlobalStats.ParamScopeEntryValueBytesCovered.Value);
printDatum(J, "sum_all_local_vars(#bytes in parent scope)",
GlobalStats.LocalVarScopeBytes.Value);
printDatum(J,
"sum_all_local_vars(#bytes in parent scope covered by "
"DW_AT_location)",
GlobalStats.LocalVarScopeBytesCovered.Value);
printDatum(J,
"sum_all_local_vars(#bytes in parent scope covered by "
"DW_OP_entry_value)",
GlobalStats.LocalVarScopeEntryValueBytesCovered.Value);
printDatum(J, "#bytes within functions", GlobalStats.FunctionSize.Value);
printDatum(J, "#bytes within inlined functions",
GlobalStats.InlineFunctionSize.Value);
// Print the summary for formal parameters.
printDatum(J, "#params", ParamTotal.Value);
printDatum(J, "#params with source location", ParamWithSrcLoc.Value);
printDatum(J, "#params with type", ParamWithType.Value);
printDatum(J, "#params with binary location", ParamWithLoc.Value);
// Print the summary for local variables.
printDatum(J, "#local vars", LocalVarTotal.Value);
printDatum(J, "#local vars with source location", LocalVarWithSrcLoc.Value);
printDatum(J, "#local vars with type", LocalVarWithType.Value);
printDatum(J, "#local vars with binary location", LocalVarWithLoc.Value);
// Print the debug section sizes.
printSectionSizes(J, Sizes);
// Print the location statistics for variables (includes local variables
// and formal parameters).
printDatum(J, "#variables processed by location statistics",
LocStats.NumVarParam.Value);
printLocationStats(J, "#variables", LocStats.VarParamLocStats);
printLocationStats(J, "#variables - entry values",
LocStats.VarParamNonEntryValLocStats);
// Print the location statistics for formal parameters.
printDatum(J, "#params processed by location statistics",
LocStats.NumParam.Value);
printLocationStats(J, "#params", LocStats.ParamLocStats);
printLocationStats(J, "#params - entry values",
LocStats.ParamNonEntryValLocStats);
// Print the location statistics for local variables.
printDatum(J, "#local vars processed by location statistics",
LocStats.NumVar.Value);
printLocationStats(J, "#local vars", LocStats.LocalVarLocStats);
printLocationStats(J, "#local vars - entry values",
LocStats.LocalVarNonEntryValLocStats);
J.objectEnd();
OS << '\n';
LLVM_DEBUG(
llvm::dbgs() << "Total Availability: "
<< (VarParamTotal.Value
? (int)std::round((VarParamWithLoc.Value * 100.0) /
VarParamTotal.Value)
: 0)
<< "%\n";
llvm::dbgs() << "PC Ranges covered: "
<< (GlobalStats.ScopeBytes.Value
? (int)std::round(
(GlobalStats.ScopeBytesCovered.Value * 100.0) /
GlobalStats.ScopeBytes.Value)
: 0)
<< "%\n");
return true;
}
|