1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
|
//===-- ProfiledBinary.cpp - Binary decoder ---------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ProfiledBinary.h"
#include "ErrorHandling.h"
#include "ProfileGenerator.h"
#include "llvm/ADT/Triple.h"
#include "llvm/DebugInfo/Symbolize/SymbolizableModule.h"
#include "llvm/Demangle/Demangle.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/TargetSelect.h"
#define DEBUG_TYPE "load-binary"
using namespace llvm;
using namespace sampleprof;
cl::opt<bool> ShowDisassemblyOnly("show-disassembly-only",
cl::desc("Print disassembled code."));
cl::opt<bool> ShowSourceLocations("show-source-locations",
cl::desc("Print source locations."));
static cl::opt<bool>
ShowCanonicalFnName("show-canonical-fname",
cl::desc("Print canonical function name."));
static cl::opt<bool> ShowPseudoProbe(
"show-pseudo-probe",
cl::desc("Print pseudo probe section and disassembled info."));
static cl::opt<bool> UseDwarfCorrelation(
"use-dwarf-correlation",
cl::desc("Use dwarf for profile correlation even when binary contains "
"pseudo probe."));
static cl::opt<std::string>
DWPPath("dwp", cl::init(""),
cl::desc("Path of .dwp file. When not specified, it will be "
"<binary>.dwp in the same directory as the main binary."));
static cl::list<std::string> DisassembleFunctions(
"disassemble-functions", cl::CommaSeparated,
cl::desc("List of functions to print disassembly for. Accept demangled "
"names only. Only work with show-disassembly-only"));
extern cl::opt<bool> ShowDetailedWarning;
namespace llvm {
namespace sampleprof {
static const Target *getTarget(const ObjectFile *Obj) {
Triple TheTriple = Obj->makeTriple();
std::string Error;
std::string ArchName;
const Target *TheTarget =
TargetRegistry::lookupTarget(ArchName, TheTriple, Error);
if (!TheTarget)
exitWithError(Error, Obj->getFileName());
return TheTarget;
}
void BinarySizeContextTracker::addInstructionForContext(
const SampleContextFrameVector &Context, uint32_t InstrSize) {
ContextTrieNode *CurNode = &RootContext;
bool IsLeaf = true;
for (const auto &Callsite : reverse(Context)) {
StringRef CallerName = Callsite.FuncName;
LineLocation CallsiteLoc = IsLeaf ? LineLocation(0, 0) : Callsite.Location;
CurNode = CurNode->getOrCreateChildContext(CallsiteLoc, CallerName);
IsLeaf = false;
}
CurNode->addFunctionSize(InstrSize);
}
uint32_t
BinarySizeContextTracker::getFuncSizeForContext(const ContextTrieNode *Node) {
ContextTrieNode *CurrNode = &RootContext;
ContextTrieNode *PrevNode = nullptr;
Optional<uint32_t> Size;
// Start from top-level context-less function, traverse down the reverse
// context trie to find the best/longest match for given context, then
// retrieve the size.
LineLocation CallSiteLoc(0, 0);
while (CurrNode && Node->getParentContext() != nullptr) {
PrevNode = CurrNode;
CurrNode = CurrNode->getChildContext(CallSiteLoc, Node->getFuncName());
if (CurrNode && CurrNode->getFunctionSize())
Size = CurrNode->getFunctionSize().value();
CallSiteLoc = Node->getCallSiteLoc();
Node = Node->getParentContext();
}
// If we traversed all nodes along the path of the context and haven't
// found a size yet, pivot to look for size from sibling nodes, i.e size
// of inlinee under different context.
if (!Size) {
if (!CurrNode)
CurrNode = PrevNode;
while (!Size && CurrNode && !CurrNode->getAllChildContext().empty()) {
CurrNode = &CurrNode->getAllChildContext().begin()->second;
if (CurrNode->getFunctionSize())
Size = CurrNode->getFunctionSize().value();
}
}
assert(Size && "We should at least find one context size.");
return Size.value();
}
void BinarySizeContextTracker::trackInlineesOptimizedAway(
MCPseudoProbeDecoder &ProbeDecoder) {
ProbeFrameStack ProbeContext;
for (const auto &Child : ProbeDecoder.getDummyInlineRoot().getChildren())
trackInlineesOptimizedAway(ProbeDecoder, *Child.second.get(), ProbeContext);
}
void BinarySizeContextTracker::trackInlineesOptimizedAway(
MCPseudoProbeDecoder &ProbeDecoder,
MCDecodedPseudoProbeInlineTree &ProbeNode, ProbeFrameStack &ProbeContext) {
StringRef FuncName =
ProbeDecoder.getFuncDescForGUID(ProbeNode.Guid)->FuncName;
ProbeContext.emplace_back(FuncName, 0);
// This ProbeContext has a probe, so it has code before inlining and
// optimization. Make sure we mark its size as known.
if (!ProbeNode.getProbes().empty()) {
ContextTrieNode *SizeContext = &RootContext;
for (auto &ProbeFrame : reverse(ProbeContext)) {
StringRef CallerName = ProbeFrame.first;
LineLocation CallsiteLoc(ProbeFrame.second, 0);
SizeContext =
SizeContext->getOrCreateChildContext(CallsiteLoc, CallerName);
}
// Add 0 size to make known.
SizeContext->addFunctionSize(0);
}
// DFS down the probe inline tree
for (const auto &ChildNode : ProbeNode.getChildren()) {
InlineSite Location = ChildNode.first;
ProbeContext.back().second = std::get<1>(Location);
trackInlineesOptimizedAway(ProbeDecoder, *ChildNode.second.get(),
ProbeContext);
}
ProbeContext.pop_back();
}
void ProfiledBinary::warnNoFuncEntry() {
uint64_t NoFuncEntryNum = 0;
for (auto &F : BinaryFunctions) {
if (F.second.Ranges.empty())
continue;
bool hasFuncEntry = false;
for (auto &R : F.second.Ranges) {
if (FuncRange *FR = findFuncRangeForStartOffset(R.first)) {
if (FR->IsFuncEntry) {
hasFuncEntry = true;
break;
}
}
}
if (!hasFuncEntry) {
NoFuncEntryNum++;
if (ShowDetailedWarning)
WithColor::warning()
<< "Failed to determine function entry for " << F.first
<< " due to inconsistent name from symbol table and dwarf info.\n";
}
}
emitWarningSummary(NoFuncEntryNum, BinaryFunctions.size(),
"of functions failed to determine function entry due to "
"inconsistent name from symbol table and dwarf info.");
}
void ProfiledBinary::load() {
// Attempt to open the binary.
OwningBinary<Binary> OBinary = unwrapOrError(createBinary(Path), Path);
Binary &ExeBinary = *OBinary.getBinary();
auto *Obj = dyn_cast<ELFObjectFileBase>(&ExeBinary);
if (!Obj)
exitWithError("not a valid Elf image", Path);
TheTriple = Obj->makeTriple();
// Current only support X86
if (!TheTriple.isX86())
exitWithError("unsupported target", TheTriple.getTriple());
LLVM_DEBUG(dbgs() << "Loading " << Path << "\n");
// Find the preferred load address for text sections.
setPreferredTextSegmentAddresses(Obj);
checkPseudoProbe(Obj);
if (ShowDisassemblyOnly)
decodePseudoProbe(Obj);
// Load debug info of subprograms from DWARF section.
// If path of debug info binary is specified, use the debug info from it,
// otherwise use the debug info from the executable binary.
if (!DebugBinaryPath.empty()) {
OwningBinary<Binary> DebugPath =
unwrapOrError(createBinary(DebugBinaryPath), DebugBinaryPath);
loadSymbolsFromDWARF(*cast<ObjectFile>(DebugPath.getBinary()));
} else {
loadSymbolsFromDWARF(*cast<ObjectFile>(&ExeBinary));
}
// Disassemble the text sections.
disassemble(Obj);
// Use function start and return address to infer prolog and epilog
ProEpilogTracker.inferPrologOffsets(StartOffset2FuncRangeMap);
ProEpilogTracker.inferEpilogOffsets(RetOffsets);
warnNoFuncEntry();
// TODO: decode other sections.
}
bool ProfiledBinary::inlineContextEqual(uint64_t Address1, uint64_t Address2) {
uint64_t Offset1 = virtualAddrToOffset(Address1);
uint64_t Offset2 = virtualAddrToOffset(Address2);
const SampleContextFrameVector &Context1 = getFrameLocationStack(Offset1);
const SampleContextFrameVector &Context2 = getFrameLocationStack(Offset2);
if (Context1.size() != Context2.size())
return false;
if (Context1.empty())
return false;
// The leaf frame contains location within the leaf, and it
// needs to be remove that as it's not part of the calling context
return std::equal(Context1.begin(), Context1.begin() + Context1.size() - 1,
Context2.begin(), Context2.begin() + Context2.size() - 1);
}
SampleContextFrameVector
ProfiledBinary::getExpandedContext(const SmallVectorImpl<uint64_t> &Stack,
bool &WasLeafInlined) {
SampleContextFrameVector ContextVec;
if (Stack.empty())
return ContextVec;
// Process from frame root to leaf
for (auto Address : Stack) {
uint64_t Offset = virtualAddrToOffset(Address);
const SampleContextFrameVector &ExpandedContext =
getFrameLocationStack(Offset);
// An instruction without a valid debug line will be ignored by sample
// processing
if (ExpandedContext.empty())
return SampleContextFrameVector();
// Set WasLeafInlined to the size of inlined frame count for the last
// address which is leaf
WasLeafInlined = (ExpandedContext.size() > 1);
ContextVec.append(ExpandedContext);
}
// Replace with decoded base discriminator
for (auto &Frame : ContextVec) {
Frame.Location.Discriminator = ProfileGeneratorBase::getBaseDiscriminator(
Frame.Location.Discriminator, UseFSDiscriminator);
}
assert(ContextVec.size() && "Context length should be at least 1");
// Compress the context string except for the leaf frame
auto LeafFrame = ContextVec.back();
LeafFrame.Location = LineLocation(0, 0);
ContextVec.pop_back();
CSProfileGenerator::compressRecursionContext(ContextVec);
CSProfileGenerator::trimContext(ContextVec);
ContextVec.push_back(LeafFrame);
return ContextVec;
}
template <class ELFT>
void ProfiledBinary::setPreferredTextSegmentAddresses(const ELFFile<ELFT> &Obj,
StringRef FileName) {
const auto &PhdrRange = unwrapOrError(Obj.program_headers(), FileName);
// FIXME: This should be the page size of the system running profiling.
// However such info isn't available at post-processing time, assuming
// 4K page now. Note that we don't use EXEC_PAGESIZE from <linux/param.h>
// because we may build the tools on non-linux.
uint32_t PageSize = 0x1000;
for (const typename ELFT::Phdr &Phdr : PhdrRange) {
if (Phdr.p_type == ELF::PT_LOAD) {
if (!FirstLoadableAddress)
FirstLoadableAddress = Phdr.p_vaddr & ~(PageSize - 1U);
if (Phdr.p_flags & ELF::PF_X) {
// Segments will always be loaded at a page boundary.
PreferredTextSegmentAddresses.push_back(Phdr.p_vaddr &
~(PageSize - 1U));
TextSegmentOffsets.push_back(Phdr.p_offset & ~(PageSize - 1U));
}
}
}
if (PreferredTextSegmentAddresses.empty())
exitWithError("no executable segment found", FileName);
}
void ProfiledBinary::setPreferredTextSegmentAddresses(
const ELFObjectFileBase *Obj) {
if (const auto *ELFObj = dyn_cast<ELF32LEObjectFile>(Obj))
setPreferredTextSegmentAddresses(ELFObj->getELFFile(), Obj->getFileName());
else if (const auto *ELFObj = dyn_cast<ELF32BEObjectFile>(Obj))
setPreferredTextSegmentAddresses(ELFObj->getELFFile(), Obj->getFileName());
else if (const auto *ELFObj = dyn_cast<ELF64LEObjectFile>(Obj))
setPreferredTextSegmentAddresses(ELFObj->getELFFile(), Obj->getFileName());
else if (const auto *ELFObj = cast<ELF64BEObjectFile>(Obj))
setPreferredTextSegmentAddresses(ELFObj->getELFFile(), Obj->getFileName());
else
llvm_unreachable("invalid ELF object format");
}
void ProfiledBinary::checkPseudoProbe(const ELFObjectFileBase *Obj) {
if (UseDwarfCorrelation)
return;
bool HasProbeDescSection = false;
bool HasPseudoProbeSection = false;
StringRef FileName = Obj->getFileName();
for (section_iterator SI = Obj->section_begin(), SE = Obj->section_end();
SI != SE; ++SI) {
const SectionRef &Section = *SI;
StringRef SectionName = unwrapOrError(Section.getName(), FileName);
if (SectionName == ".pseudo_probe_desc") {
HasProbeDescSection = true;
} else if (SectionName == ".pseudo_probe") {
HasPseudoProbeSection = true;
}
}
// set UsePseudoProbes flag, used for PerfReader
UsePseudoProbes = HasProbeDescSection && HasPseudoProbeSection;
}
void ProfiledBinary::decodePseudoProbe(const ELFObjectFileBase *Obj) {
if (!UsePseudoProbes)
return;
std::unordered_set<uint64_t> ProfiledGuids;
if (!ShowDisassemblyOnly)
for (auto *F : ProfiledFunctions)
ProfiledGuids.insert(Function::getGUID(F->FuncName));
StringRef FileName = Obj->getFileName();
for (section_iterator SI = Obj->section_begin(), SE = Obj->section_end();
SI != SE; ++SI) {
const SectionRef &Section = *SI;
StringRef SectionName = unwrapOrError(Section.getName(), FileName);
if (SectionName == ".pseudo_probe_desc") {
StringRef Contents = unwrapOrError(Section.getContents(), FileName);
if (!ProbeDecoder.buildGUID2FuncDescMap(
reinterpret_cast<const uint8_t *>(Contents.data()),
Contents.size()))
exitWithError(
"Pseudo Probe decoder fail in .pseudo_probe_desc section");
} else if (SectionName == ".pseudo_probe") {
StringRef Contents = unwrapOrError(Section.getContents(), FileName);
if (!ProbeDecoder.buildAddress2ProbeMap(
reinterpret_cast<const uint8_t *>(Contents.data()),
Contents.size(), ProfiledGuids))
exitWithError("Pseudo Probe decoder fail in .pseudo_probe section");
}
}
// Build TopLevelProbeFrameMap to track size for optimized inlinees when probe
// is available
if (TrackFuncContextSize) {
for (const auto &Child : ProbeDecoder.getDummyInlineRoot().getChildren()) {
auto *Frame = Child.second.get();
StringRef FuncName =
ProbeDecoder.getFuncDescForGUID(Frame->Guid)->FuncName;
TopLevelProbeFrameMap[FuncName] = Frame;
}
}
if (ShowPseudoProbe)
ProbeDecoder.printGUID2FuncDescMap(outs());
}
void ProfiledBinary::decodePseudoProbe() {
OwningBinary<Binary> OBinary = unwrapOrError(createBinary(Path), Path);
Binary &ExeBinary = *OBinary.getBinary();
auto *Obj = dyn_cast<ELFObjectFileBase>(&ExeBinary);
decodePseudoProbe(Obj);
}
void ProfiledBinary::setIsFuncEntry(uint64_t Offset, StringRef RangeSymName) {
// Note that the start offset of each ELF section can be a non-function
// symbol, we need to binary search for the start of a real function range.
auto *FuncRange = findFuncRangeForOffset(Offset);
// Skip external function symbol.
if (!FuncRange)
return;
// Set IsFuncEntry to ture if there is only one range in the function or the
// RangeSymName from ELF is equal to its DWARF-based function name.
if (FuncRange->Func->Ranges.size() == 1 ||
(!FuncRange->IsFuncEntry && FuncRange->getFuncName() == RangeSymName))
FuncRange->IsFuncEntry = true;
}
bool ProfiledBinary::dissassembleSymbol(std::size_t SI, ArrayRef<uint8_t> Bytes,
SectionSymbolsTy &Symbols,
const SectionRef &Section) {
std::size_t SE = Symbols.size();
uint64_t SectionOffset = Section.getAddress() - getPreferredBaseAddress();
uint64_t SectSize = Section.getSize();
uint64_t StartOffset = Symbols[SI].Addr - getPreferredBaseAddress();
uint64_t NextStartOffset =
(SI + 1 < SE) ? Symbols[SI + 1].Addr - getPreferredBaseAddress()
: SectionOffset + SectSize;
setIsFuncEntry(StartOffset,
FunctionSamples::getCanonicalFnName(Symbols[SI].Name));
StringRef SymbolName =
ShowCanonicalFnName
? FunctionSamples::getCanonicalFnName(Symbols[SI].Name)
: Symbols[SI].Name;
bool ShowDisassembly =
ShowDisassemblyOnly && (DisassembleFunctionSet.empty() ||
DisassembleFunctionSet.count(SymbolName));
if (ShowDisassembly)
outs() << '<' << SymbolName << ">:\n";
auto WarnInvalidInsts = [](uint64_t Start, uint64_t End) {
WithColor::warning() << "Invalid instructions at "
<< format("%8" PRIx64, Start) << " - "
<< format("%8" PRIx64, End) << "\n";
};
uint64_t Offset = StartOffset;
// Size of a consecutive invalid instruction range starting from Offset -1
// backwards.
uint64_t InvalidInstLength = 0;
while (Offset < NextStartOffset) {
MCInst Inst;
uint64_t Size;
// Disassemble an instruction.
bool Disassembled =
DisAsm->getInstruction(Inst, Size, Bytes.slice(Offset - SectionOffset),
Offset + getPreferredBaseAddress(), nulls());
if (Size == 0)
Size = 1;
if (ShowDisassembly) {
if (ShowPseudoProbe) {
ProbeDecoder.printProbeForAddress(outs(),
Offset + getPreferredBaseAddress());
}
outs() << format("%8" PRIx64 ":", Offset + getPreferredBaseAddress());
size_t Start = outs().tell();
if (Disassembled)
IPrinter->printInst(&Inst, Offset + Size, "", *STI.get(), outs());
else
outs() << "\t<unknown>";
if (ShowSourceLocations) {
unsigned Cur = outs().tell() - Start;
if (Cur < 40)
outs().indent(40 - Cur);
InstructionPointer IP(this, Offset);
outs() << getReversedLocWithContext(
symbolize(IP, ShowCanonicalFnName, ShowPseudoProbe));
}
outs() << "\n";
}
if (Disassembled) {
const MCInstrDesc &MCDesc = MII->get(Inst.getOpcode());
// Record instruction size.
Offset2InstSizeMap[Offset] = Size;
// Populate address maps.
CodeAddrOffsets.push_back(Offset);
if (MCDesc.isCall()) {
CallOffsets.insert(Offset);
UncondBranchOffsets.insert(Offset);
} else if (MCDesc.isReturn()) {
RetOffsets.insert(Offset);
UncondBranchOffsets.insert(Offset);
} else if (MCDesc.isBranch()) {
if (MCDesc.isUnconditionalBranch())
UncondBranchOffsets.insert(Offset);
BranchOffsets.insert(Offset);
}
if (InvalidInstLength) {
WarnInvalidInsts(Offset - InvalidInstLength, Offset - 1);
InvalidInstLength = 0;
}
} else {
InvalidInstLength += Size;
}
Offset += Size;
}
if (InvalidInstLength)
WarnInvalidInsts(Offset - InvalidInstLength, Offset - 1);
if (ShowDisassembly)
outs() << "\n";
return true;
}
void ProfiledBinary::setUpDisassembler(const ELFObjectFileBase *Obj) {
const Target *TheTarget = getTarget(Obj);
std::string TripleName = TheTriple.getTriple();
StringRef FileName = Obj->getFileName();
MRI.reset(TheTarget->createMCRegInfo(TripleName));
if (!MRI)
exitWithError("no register info for target " + TripleName, FileName);
MCTargetOptions MCOptions;
AsmInfo.reset(TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
if (!AsmInfo)
exitWithError("no assembly info for target " + TripleName, FileName);
SubtargetFeatures Features = Obj->getFeatures();
STI.reset(
TheTarget->createMCSubtargetInfo(TripleName, "", Features.getString()));
if (!STI)
exitWithError("no subtarget info for target " + TripleName, FileName);
MII.reset(TheTarget->createMCInstrInfo());
if (!MII)
exitWithError("no instruction info for target " + TripleName, FileName);
MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get());
std::unique_ptr<MCObjectFileInfo> MOFI(
TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false));
Ctx.setObjectFileInfo(MOFI.get());
DisAsm.reset(TheTarget->createMCDisassembler(*STI, Ctx));
if (!DisAsm)
exitWithError("no disassembler for target " + TripleName, FileName);
MIA.reset(TheTarget->createMCInstrAnalysis(MII.get()));
int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
IPrinter.reset(TheTarget->createMCInstPrinter(
Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
IPrinter->setPrintBranchImmAsAddress(true);
}
void ProfiledBinary::disassemble(const ELFObjectFileBase *Obj) {
// Set up disassembler and related components.
setUpDisassembler(Obj);
// Create a mapping from virtual address to symbol name. The symbols in text
// sections are the candidates to dissassemble.
std::map<SectionRef, SectionSymbolsTy> AllSymbols;
StringRef FileName = Obj->getFileName();
for (const SymbolRef &Symbol : Obj->symbols()) {
const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
if (SecI != Obj->section_end())
AllSymbols[*SecI].push_back(SymbolInfoTy(Addr, Name, ELF::STT_NOTYPE));
}
// Sort all the symbols. Use a stable sort to stabilize the output.
for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
stable_sort(SecSyms.second);
DisassembleFunctionSet.insert(DisassembleFunctions.begin(),
DisassembleFunctions.end());
assert((DisassembleFunctionSet.empty() || ShowDisassemblyOnly) &&
"Functions to disassemble should be only specified together with "
"--show-disassembly-only");
if (ShowDisassemblyOnly)
outs() << "\nDisassembly of " << FileName << ":\n";
// Dissassemble a text section.
for (section_iterator SI = Obj->section_begin(), SE = Obj->section_end();
SI != SE; ++SI) {
const SectionRef &Section = *SI;
if (!Section.isText())
continue;
uint64_t ImageLoadAddr = getPreferredBaseAddress();
uint64_t SectionOffset = Section.getAddress() - ImageLoadAddr;
uint64_t SectSize = Section.getSize();
if (!SectSize)
continue;
// Register the text section.
TextSections.insert({SectionOffset, SectSize});
StringRef SectionName = unwrapOrError(Section.getName(), FileName);
if (ShowDisassemblyOnly) {
outs() << "\nDisassembly of section " << SectionName;
outs() << " [" << format("0x%" PRIx64, Section.getAddress()) << ", "
<< format("0x%" PRIx64, Section.getAddress() + SectSize)
<< "]:\n\n";
}
if (SectionName == ".plt")
continue;
// Get the section data.
ArrayRef<uint8_t> Bytes =
arrayRefFromStringRef(unwrapOrError(Section.getContents(), FileName));
// Get the list of all the symbols in this section.
SectionSymbolsTy &Symbols = AllSymbols[Section];
// Disassemble symbol by symbol.
for (std::size_t SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
if (!dissassembleSymbol(SI, Bytes, Symbols, Section))
exitWithError("disassembling error", FileName);
}
}
// Dissassemble rodata section to check if FS discriminator symbol exists.
checkUseFSDiscriminator(Obj, AllSymbols);
}
void ProfiledBinary::checkUseFSDiscriminator(
const ELFObjectFileBase *Obj,
std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
const char *FSDiscriminatorVar = "__llvm_fs_discriminator__";
for (section_iterator SI = Obj->section_begin(), SE = Obj->section_end();
SI != SE; ++SI) {
const SectionRef &Section = *SI;
if (!Section.isData() || Section.getSize() == 0)
continue;
SectionSymbolsTy &Symbols = AllSymbols[Section];
for (std::size_t SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
if (Symbols[SI].Name == FSDiscriminatorVar) {
UseFSDiscriminator = true;
return;
}
}
}
}
void ProfiledBinary::loadSymbolsFromDWARFUnit(DWARFUnit &CompilationUnit) {
for (const auto &DieInfo : CompilationUnit.dies()) {
llvm::DWARFDie Die(&CompilationUnit, &DieInfo);
if (!Die.isSubprogramDIE())
continue;
auto Name = Die.getName(llvm::DINameKind::LinkageName);
if (!Name)
Name = Die.getName(llvm::DINameKind::ShortName);
if (!Name)
continue;
auto RangesOrError = Die.getAddressRanges();
if (!RangesOrError)
continue;
const DWARFAddressRangesVector &Ranges = RangesOrError.get();
if (Ranges.empty())
continue;
// Different DWARF symbols can have same function name, search or create
// BinaryFunction indexed by the name.
auto Ret = BinaryFunctions.emplace(Name, BinaryFunction());
auto &Func = Ret.first->second;
if (Ret.second)
Func.FuncName = Ret.first->first;
for (const auto &Range : Ranges) {
uint64_t FuncStart = Range.LowPC;
uint64_t FuncSize = Range.HighPC - FuncStart;
if (FuncSize == 0 || FuncStart < getPreferredBaseAddress())
continue;
uint64_t StartOffset = FuncStart - getPreferredBaseAddress();
uint64_t EndOffset = Range.HighPC - getPreferredBaseAddress();
// We may want to know all ranges for one function. Here group the
// ranges and store them into BinaryFunction.
Func.Ranges.emplace_back(StartOffset, EndOffset);
auto R = StartOffset2FuncRangeMap.emplace(StartOffset, FuncRange());
if (R.second) {
FuncRange &FRange = R.first->second;
FRange.Func = &Func;
FRange.StartOffset = StartOffset;
FRange.EndOffset = EndOffset;
} else {
WithColor::warning()
<< "Duplicated symbol start address at "
<< format("%8" PRIx64, StartOffset + getPreferredBaseAddress())
<< " " << R.first->second.getFuncName() << " and " << Name << "\n";
}
}
}
}
void ProfiledBinary::loadSymbolsFromDWARF(ObjectFile &Obj) {
auto DebugContext = llvm::DWARFContext::create(
Obj, DWARFContext::ProcessDebugRelocations::Process, nullptr, DWPPath);
if (!DebugContext)
exitWithError("Error creating the debug info context", Path);
for (const auto &CompilationUnit : DebugContext->compile_units())
loadSymbolsFromDWARFUnit(*CompilationUnit.get());
// Handles DWO sections that can either be in .o, .dwo or .dwp files.
for (const auto &CompilationUnit : DebugContext->compile_units()) {
DWARFUnit *const DwarfUnit = CompilationUnit.get();
if (llvm::Optional<uint64_t> DWOId = DwarfUnit->getDWOId()) {
DWARFUnit *DWOCU = DwarfUnit->getNonSkeletonUnitDIE(false).getDwarfUnit();
if (!DWOCU->isDWOUnit()) {
std::string DWOName = dwarf::toString(
DwarfUnit->getUnitDIE().find(
{dwarf::DW_AT_dwo_name, dwarf::DW_AT_GNU_dwo_name}),
"");
WithColor::warning()
<< "DWO debug information for " << DWOName
<< " was not loaded. Please check the .o, .dwo or .dwp path.\n";
continue;
}
loadSymbolsFromDWARFUnit(*DWOCU);
}
}
if (BinaryFunctions.empty())
WithColor::warning() << "Loading of DWARF info completed, but no binary "
"functions have been retrieved.\n";
}
void ProfiledBinary::populateSymbolListFromDWARF(
ProfileSymbolList &SymbolList) {
for (auto &I : StartOffset2FuncRangeMap)
SymbolList.add(I.second.getFuncName());
}
void ProfiledBinary::setupSymbolizer() {
symbolize::LLVMSymbolizer::Options SymbolizerOpts;
SymbolizerOpts.PrintFunctions =
DILineInfoSpecifier::FunctionNameKind::LinkageName;
SymbolizerOpts.Demangle = false;
SymbolizerOpts.DefaultArch = TheTriple.getArchName().str();
SymbolizerOpts.UseSymbolTable = false;
SymbolizerOpts.RelativeAddresses = false;
SymbolizerOpts.DWPName = DWPPath;
Symbolizer = std::make_unique<symbolize::LLVMSymbolizer>(SymbolizerOpts);
}
SampleContextFrameVector ProfiledBinary::symbolize(const InstructionPointer &IP,
bool UseCanonicalFnName,
bool UseProbeDiscriminator) {
assert(this == IP.Binary &&
"Binary should only symbolize its own instruction");
auto Addr = object::SectionedAddress{IP.Offset + getPreferredBaseAddress(),
object::SectionedAddress::UndefSection};
DIInliningInfo InlineStack = unwrapOrError(
Symbolizer->symbolizeInlinedCode(SymbolizerPath.str(), Addr),
SymbolizerPath);
SampleContextFrameVector CallStack;
for (int32_t I = InlineStack.getNumberOfFrames() - 1; I >= 0; I--) {
const auto &CallerFrame = InlineStack.getFrame(I);
if (CallerFrame.FunctionName == "<invalid>")
break;
StringRef FunctionName(CallerFrame.FunctionName);
if (UseCanonicalFnName)
FunctionName = FunctionSamples::getCanonicalFnName(FunctionName);
uint32_t Discriminator = CallerFrame.Discriminator;
uint32_t LineOffset = (CallerFrame.Line - CallerFrame.StartLine) & 0xffff;
if (UseProbeDiscriminator) {
LineOffset =
PseudoProbeDwarfDiscriminator::extractProbeIndex(Discriminator);
Discriminator = 0;
}
LineLocation Line(LineOffset, Discriminator);
auto It = NameStrings.insert(FunctionName.str());
CallStack.emplace_back(*It.first, Line);
}
return CallStack;
}
void ProfiledBinary::computeInlinedContextSizeForRange(uint64_t StartOffset,
uint64_t EndOffset) {
uint64_t RangeBegin = offsetToVirtualAddr(StartOffset);
uint64_t RangeEnd = offsetToVirtualAddr(EndOffset);
InstructionPointer IP(this, RangeBegin, true);
if (IP.Address != RangeBegin)
WithColor::warning() << "Invalid start instruction at "
<< format("%8" PRIx64, RangeBegin) << "\n";
if (IP.Address >= RangeEnd)
return;
do {
uint64_t Offset = virtualAddrToOffset(IP.Address);
const SampleContextFrameVector &SymbolizedCallStack =
getFrameLocationStack(Offset, UsePseudoProbes);
uint64_t Size = Offset2InstSizeMap[Offset];
// Record instruction size for the corresponding context
FuncSizeTracker.addInstructionForContext(SymbolizedCallStack, Size);
} while (IP.advance() && IP.Address < RangeEnd);
}
void ProfiledBinary::computeInlinedContextSizeForFunc(
const BinaryFunction *Func) {
// Note that a function can be spilt into multiple ranges, so compute for all
// ranges of the function.
for (const auto &Range : Func->Ranges)
computeInlinedContextSizeForRange(Range.first, Range.second);
// Track optimized-away inlinee for probed binary. A function inlined and then
// optimized away should still have their probes left over in places.
if (usePseudoProbes()) {
auto I = TopLevelProbeFrameMap.find(Func->FuncName);
if (I != TopLevelProbeFrameMap.end()) {
BinarySizeContextTracker::ProbeFrameStack ProbeContext;
FuncSizeTracker.trackInlineesOptimizedAway(ProbeDecoder, *I->second,
ProbeContext);
}
}
}
InstructionPointer::InstructionPointer(const ProfiledBinary *Binary,
uint64_t Address, bool RoundToNext)
: Binary(Binary), Address(Address) {
Index = Binary->getIndexForAddr(Address);
if (RoundToNext) {
// we might get address which is not the code
// it should round to the next valid address
if (Index >= Binary->getCodeOffsetsSize())
this->Address = UINT64_MAX;
else
this->Address = Binary->getAddressforIndex(Index);
}
}
bool InstructionPointer::advance() {
Index++;
if (Index >= Binary->getCodeOffsetsSize()) {
Address = UINT64_MAX;
return false;
}
Address = Binary->getAddressforIndex(Index);
return true;
}
bool InstructionPointer::backward() {
if (Index == 0) {
Address = 0;
return false;
}
Index--;
Address = Binary->getAddressforIndex(Index);
return true;
}
void InstructionPointer::update(uint64_t Addr) {
Address = Addr;
Index = Binary->getIndexForAddr(Address);
}
} // end namespace sampleprof
} // end namespace llvm
|