File: MemRefToSPIRV.cpp

package info (click to toggle)
llvm-toolchain-15 1%3A15.0.6-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,554,644 kB
  • sloc: cpp: 5,922,452; ansic: 1,012,136; asm: 674,362; python: 191,568; objc: 73,855; f90: 42,327; lisp: 31,913; pascal: 11,973; javascript: 10,144; sh: 9,421; perl: 7,447; ml: 5,527; awk: 3,523; makefile: 2,520; xml: 885; cs: 573; fortran: 567
file content (555 lines) | stat: -rw-r--r-- 23,188 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
//===- MemRefToSPIRV.cpp - MemRef to SPIR-V Patterns ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements patterns to convert MemRef dialect to SPIR-V dialect.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVDialect.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVEnums.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVOps.h"
#include "mlir/Dialect/SPIRV/Transforms/SPIRVConversion.h"
#include "llvm/Support/Debug.h"

#define DEBUG_TYPE "memref-to-spirv-pattern"

using namespace mlir;

//===----------------------------------------------------------------------===//
// Utility functions
//===----------------------------------------------------------------------===//

/// Returns the offset of the value in `targetBits` representation.
///
/// `srcIdx` is an index into a 1-D array with each element having `sourceBits`.
/// It's assumed to be non-negative.
///
/// When accessing an element in the array treating as having elements of
/// `targetBits`, multiple values are loaded in the same time. The method
/// returns the offset where the `srcIdx` locates in the value. For example, if
/// `sourceBits` equals to 8 and `targetBits` equals to 32, the x-th element is
/// located at (x % 4) * 8. Because there are four elements in one i32, and one
/// element has 8 bits.
static Value getOffsetForBitwidth(Location loc, Value srcIdx, int sourceBits,
                                  int targetBits, OpBuilder &builder) {
  assert(targetBits % sourceBits == 0);
  IntegerType targetType = builder.getIntegerType(targetBits);
  IntegerAttr idxAttr =
      builder.getIntegerAttr(targetType, targetBits / sourceBits);
  auto idx = builder.create<spirv::ConstantOp>(loc, targetType, idxAttr);
  IntegerAttr srcBitsAttr = builder.getIntegerAttr(targetType, sourceBits);
  auto srcBitsValue =
      builder.create<spirv::ConstantOp>(loc, targetType, srcBitsAttr);
  auto m = builder.create<spirv::UModOp>(loc, srcIdx, idx);
  return builder.create<spirv::IMulOp>(loc, targetType, m, srcBitsValue);
}

/// Returns an adjusted spirv::AccessChainOp. Based on the
/// extension/capabilities, certain integer bitwidths `sourceBits` might not be
/// supported. During conversion if a memref of an unsupported type is used,
/// load/stores to this memref need to be modified to use a supported higher
/// bitwidth `targetBits` and extracting the required bits. For an accessing a
/// 1D array (spv.array or spv.rt_array), the last index is modified to load the
/// bits needed. The extraction of the actual bits needed are handled
/// separately. Note that this only works for a 1-D tensor.
static Value adjustAccessChainForBitwidth(SPIRVTypeConverter &typeConverter,
                                          spirv::AccessChainOp op,
                                          int sourceBits, int targetBits,
                                          OpBuilder &builder) {
  assert(targetBits % sourceBits == 0);
  const auto loc = op.getLoc();
  IntegerType targetType = builder.getIntegerType(targetBits);
  IntegerAttr attr =
      builder.getIntegerAttr(targetType, targetBits / sourceBits);
  auto idx = builder.create<spirv::ConstantOp>(loc, targetType, attr);
  auto lastDim = op->getOperand(op.getNumOperands() - 1);
  auto indices = llvm::to_vector<4>(op.indices());
  // There are two elements if this is a 1-D tensor.
  assert(indices.size() == 2);
  indices.back() = builder.create<spirv::SDivOp>(loc, lastDim, idx);
  Type t = typeConverter.convertType(op.component_ptr().getType());
  return builder.create<spirv::AccessChainOp>(loc, t, op.base_ptr(), indices);
}

/// Returns the shifted `targetBits`-bit value with the given offset.
static Value shiftValue(Location loc, Value value, Value offset, Value mask,
                        int targetBits, OpBuilder &builder) {
  Type targetType = builder.getIntegerType(targetBits);
  Value result = builder.create<spirv::BitwiseAndOp>(loc, value, mask);
  return builder.create<spirv::ShiftLeftLogicalOp>(loc, targetType, result,
                                                   offset);
}

/// Returns true if the allocations of memref `type` generated from `allocOp`
/// can be lowered to SPIR-V.
static bool isAllocationSupported(Operation *allocOp, MemRefType type) {
  if (isa<memref::AllocOp, memref::DeallocOp>(allocOp)) {
    if (SPIRVTypeConverter::getMemorySpaceForStorageClass(
            spirv::StorageClass::Workgroup) != type.getMemorySpaceAsInt())
      return false;
  } else if (isa<memref::AllocaOp>(allocOp)) {
    if (SPIRVTypeConverter::getMemorySpaceForStorageClass(
            spirv::StorageClass::Function) != type.getMemorySpaceAsInt())
      return false;
  } else {
    return false;
  }

  // Currently only support static shape and int or float or vector of int or
  // float element type.
  if (!type.hasStaticShape())
    return false;

  Type elementType = type.getElementType();
  if (auto vecType = elementType.dyn_cast<VectorType>())
    elementType = vecType.getElementType();
  return elementType.isIntOrFloat();
}

/// Returns the scope to use for atomic operations use for emulating store
/// operations of unsupported integer bitwidths, based on the memref
/// type. Returns None on failure.
static Optional<spirv::Scope> getAtomicOpScope(MemRefType type) {
  Optional<spirv::StorageClass> storageClass =
      SPIRVTypeConverter::getStorageClassForMemorySpace(
          type.getMemorySpaceAsInt());
  if (!storageClass)
    return {};
  switch (*storageClass) {
  case spirv::StorageClass::StorageBuffer:
    return spirv::Scope::Device;
  case spirv::StorageClass::Workgroup:
    return spirv::Scope::Workgroup;
  default: {
  }
  }
  return {};
}

/// Casts the given `srcInt` into a boolean value.
static Value castIntNToBool(Location loc, Value srcInt, OpBuilder &builder) {
  if (srcInt.getType().isInteger(1))
    return srcInt;

  auto one = spirv::ConstantOp::getOne(srcInt.getType(), loc, builder);
  return builder.create<spirv::IEqualOp>(loc, srcInt, one);
}

/// Casts the given `srcBool` into an integer of `dstType`.
static Value castBoolToIntN(Location loc, Value srcBool, Type dstType,
                            OpBuilder &builder) {
  assert(srcBool.getType().isInteger(1));
  if (dstType.isInteger(1))
    return srcBool;
  Value zero = spirv::ConstantOp::getZero(dstType, loc, builder);
  Value one = spirv::ConstantOp::getOne(dstType, loc, builder);
  return builder.create<spirv::SelectOp>(loc, dstType, srcBool, one, zero);
}

//===----------------------------------------------------------------------===//
// Operation conversion
//===----------------------------------------------------------------------===//

// Note that DRR cannot be used for the patterns in this file: we may need to
// convert type along the way, which requires ConversionPattern. DRR generates
// normal RewritePattern.

namespace {

/// Converts memref.alloca to SPIR-V Function variables.
class AllocaOpPattern final : public OpConversionPattern<memref::AllocaOp> {
public:
  using OpConversionPattern<memref::AllocaOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(memref::AllocaOp allocaOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override;
};

/// Converts an allocation operation to SPIR-V. Currently only supports lowering
/// to Workgroup memory when the size is constant.  Note that this pattern needs
/// to be applied in a pass that runs at least at spv.module scope since it wil
/// ladd global variables into the spv.module.
class AllocOpPattern final : public OpConversionPattern<memref::AllocOp> {
public:
  using OpConversionPattern<memref::AllocOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(memref::AllocOp operation, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override;
};

/// Removed a deallocation if it is a supported allocation. Currently only
/// removes deallocation if the memory space is workgroup memory.
class DeallocOpPattern final : public OpConversionPattern<memref::DeallocOp> {
public:
  using OpConversionPattern<memref::DeallocOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(memref::DeallocOp operation, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override;
};

/// Converts memref.load to spv.Load.
class IntLoadOpPattern final : public OpConversionPattern<memref::LoadOp> {
public:
  using OpConversionPattern<memref::LoadOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(memref::LoadOp loadOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override;
};

/// Converts memref.load to spv.Load.
class LoadOpPattern final : public OpConversionPattern<memref::LoadOp> {
public:
  using OpConversionPattern<memref::LoadOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(memref::LoadOp loadOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override;
};

/// Converts memref.store to spv.Store on integers.
class IntStoreOpPattern final : public OpConversionPattern<memref::StoreOp> {
public:
  using OpConversionPattern<memref::StoreOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(memref::StoreOp storeOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override;
};

/// Converts memref.store to spv.Store.
class StoreOpPattern final : public OpConversionPattern<memref::StoreOp> {
public:
  using OpConversionPattern<memref::StoreOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(memref::StoreOp storeOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override;
};

} // namespace

//===----------------------------------------------------------------------===//
// AllocaOp
//===----------------------------------------------------------------------===//

LogicalResult
AllocaOpPattern::matchAndRewrite(memref::AllocaOp allocaOp, OpAdaptor adaptor,
                                 ConversionPatternRewriter &rewriter) const {
  MemRefType allocType = allocaOp.getType();
  if (!isAllocationSupported(allocaOp, allocType))
    return rewriter.notifyMatchFailure(allocaOp, "unhandled allocation type");

  // Get the SPIR-V type for the allocation.
  Type spirvType = getTypeConverter()->convertType(allocType);
  rewriter.replaceOpWithNewOp<spirv::VariableOp>(allocaOp, spirvType,
                                                 spirv::StorageClass::Function,
                                                 /*initializer=*/nullptr);
  return success();
}

//===----------------------------------------------------------------------===//
// AllocOp
//===----------------------------------------------------------------------===//

LogicalResult
AllocOpPattern::matchAndRewrite(memref::AllocOp operation, OpAdaptor adaptor,
                                ConversionPatternRewriter &rewriter) const {
  MemRefType allocType = operation.getType();
  if (!isAllocationSupported(operation, allocType))
    return rewriter.notifyMatchFailure(operation, "unhandled allocation type");

  // Get the SPIR-V type for the allocation.
  Type spirvType = getTypeConverter()->convertType(allocType);

  // Insert spv.GlobalVariable for this allocation.
  Operation *parent =
      SymbolTable::getNearestSymbolTable(operation->getParentOp());
  if (!parent)
    return failure();
  Location loc = operation.getLoc();
  spirv::GlobalVariableOp varOp;
  {
    OpBuilder::InsertionGuard guard(rewriter);
    Block &entryBlock = *parent->getRegion(0).begin();
    rewriter.setInsertionPointToStart(&entryBlock);
    auto varOps = entryBlock.getOps<spirv::GlobalVariableOp>();
    std::string varName =
        std::string("__workgroup_mem__") +
        std::to_string(std::distance(varOps.begin(), varOps.end()));
    varOp = rewriter.create<spirv::GlobalVariableOp>(loc, spirvType, varName,
                                                     /*initializer=*/nullptr);
  }

  // Get pointer to global variable at the current scope.
  rewriter.replaceOpWithNewOp<spirv::AddressOfOp>(operation, varOp);
  return success();
}

//===----------------------------------------------------------------------===//
// DeallocOp
//===----------------------------------------------------------------------===//

LogicalResult
DeallocOpPattern::matchAndRewrite(memref::DeallocOp operation,
                                  OpAdaptor adaptor,
                                  ConversionPatternRewriter &rewriter) const {
  MemRefType deallocType = operation.getMemref().getType().cast<MemRefType>();
  if (!isAllocationSupported(operation, deallocType))
    return rewriter.notifyMatchFailure(operation, "unhandled allocation type");
  rewriter.eraseOp(operation);
  return success();
}

//===----------------------------------------------------------------------===//
// LoadOp
//===----------------------------------------------------------------------===//

LogicalResult
IntLoadOpPattern::matchAndRewrite(memref::LoadOp loadOp, OpAdaptor adaptor,
                                  ConversionPatternRewriter &rewriter) const {
  auto loc = loadOp.getLoc();
  auto memrefType = loadOp.getMemref().getType().cast<MemRefType>();
  if (!memrefType.getElementType().isSignlessInteger())
    return failure();

  auto &typeConverter = *getTypeConverter<SPIRVTypeConverter>();
  spirv::AccessChainOp accessChainOp =
      spirv::getElementPtr(typeConverter, memrefType, adaptor.getMemref(),
                           adaptor.getIndices(), loc, rewriter);

  if (!accessChainOp)
    return failure();

  int srcBits = memrefType.getElementType().getIntOrFloatBitWidth();
  bool isBool = srcBits == 1;
  if (isBool)
    srcBits = typeConverter.getOptions().boolNumBits;
  Type pointeeType = typeConverter.convertType(memrefType)
                         .cast<spirv::PointerType>()
                         .getPointeeType();
  Type structElemType = pointeeType.cast<spirv::StructType>().getElementType(0);
  Type dstType;
  if (auto arrayType = structElemType.dyn_cast<spirv::ArrayType>())
    dstType = arrayType.getElementType();
  else
    dstType = structElemType.cast<spirv::RuntimeArrayType>().getElementType();

  int dstBits = dstType.getIntOrFloatBitWidth();
  assert(dstBits % srcBits == 0);

  // If the rewrited load op has the same bit width, use the loading value
  // directly.
  if (srcBits == dstBits) {
    Value loadVal =
        rewriter.create<spirv::LoadOp>(loc, accessChainOp.getResult());
    if (isBool)
      loadVal = castIntNToBool(loc, loadVal, rewriter);
    rewriter.replaceOp(loadOp, loadVal);
    return success();
  }

  // Assume that getElementPtr() works linearizely. If it's a scalar, the method
  // still returns a linearized accessing. If the accessing is not linearized,
  // there will be offset issues.
  assert(accessChainOp.indices().size() == 2);
  Value adjustedPtr = adjustAccessChainForBitwidth(typeConverter, accessChainOp,
                                                   srcBits, dstBits, rewriter);
  Value spvLoadOp = rewriter.create<spirv::LoadOp>(
      loc, dstType, adjustedPtr,
      loadOp->getAttrOfType<spirv::MemoryAccessAttr>(
          spirv::attributeName<spirv::MemoryAccess>()),
      loadOp->getAttrOfType<IntegerAttr>("alignment"));

  // Shift the bits to the rightmost.
  // ____XXXX________ -> ____________XXXX
  Value lastDim = accessChainOp->getOperand(accessChainOp.getNumOperands() - 1);
  Value offset = getOffsetForBitwidth(loc, lastDim, srcBits, dstBits, rewriter);
  Value result = rewriter.create<spirv::ShiftRightArithmeticOp>(
      loc, spvLoadOp.getType(), spvLoadOp, offset);

  // Apply the mask to extract corresponding bits.
  Value mask = rewriter.create<spirv::ConstantOp>(
      loc, dstType, rewriter.getIntegerAttr(dstType, (1 << srcBits) - 1));
  result = rewriter.create<spirv::BitwiseAndOp>(loc, dstType, result, mask);

  // Apply sign extension on the loading value unconditionally. The signedness
  // semantic is carried in the operator itself, we relies other pattern to
  // handle the casting.
  IntegerAttr shiftValueAttr =
      rewriter.getIntegerAttr(dstType, dstBits - srcBits);
  Value shiftValue =
      rewriter.create<spirv::ConstantOp>(loc, dstType, shiftValueAttr);
  result = rewriter.create<spirv::ShiftLeftLogicalOp>(loc, dstType, result,
                                                      shiftValue);
  result = rewriter.create<spirv::ShiftRightArithmeticOp>(loc, dstType, result,
                                                          shiftValue);

  if (isBool) {
    dstType = typeConverter.convertType(loadOp.getType());
    mask = spirv::ConstantOp::getOne(result.getType(), loc, rewriter);
    result = rewriter.create<spirv::IEqualOp>(loc, result, mask);
  } else if (result.getType().getIntOrFloatBitWidth() !=
             static_cast<unsigned>(dstBits)) {
    result = rewriter.create<spirv::SConvertOp>(loc, dstType, result);
  }
  rewriter.replaceOp(loadOp, result);

  assert(accessChainOp.use_empty());
  rewriter.eraseOp(accessChainOp);

  return success();
}

LogicalResult
LoadOpPattern::matchAndRewrite(memref::LoadOp loadOp, OpAdaptor adaptor,
                               ConversionPatternRewriter &rewriter) const {
  auto memrefType = loadOp.getMemref().getType().cast<MemRefType>();
  if (memrefType.getElementType().isSignlessInteger())
    return failure();
  auto loadPtr = spirv::getElementPtr(
      *getTypeConverter<SPIRVTypeConverter>(), memrefType, adaptor.getMemref(),
      adaptor.getIndices(), loadOp.getLoc(), rewriter);

  if (!loadPtr)
    return failure();

  rewriter.replaceOpWithNewOp<spirv::LoadOp>(loadOp, loadPtr);
  return success();
}

LogicalResult
IntStoreOpPattern::matchAndRewrite(memref::StoreOp storeOp, OpAdaptor adaptor,
                                   ConversionPatternRewriter &rewriter) const {
  auto memrefType = storeOp.getMemref().getType().cast<MemRefType>();
  if (!memrefType.getElementType().isSignlessInteger())
    return failure();

  auto loc = storeOp.getLoc();
  auto &typeConverter = *getTypeConverter<SPIRVTypeConverter>();
  spirv::AccessChainOp accessChainOp =
      spirv::getElementPtr(typeConverter, memrefType, adaptor.getMemref(),
                           adaptor.getIndices(), loc, rewriter);

  if (!accessChainOp)
    return failure();

  int srcBits = memrefType.getElementType().getIntOrFloatBitWidth();

  bool isBool = srcBits == 1;
  if (isBool)
    srcBits = typeConverter.getOptions().boolNumBits;

  Type pointeeType = typeConverter.convertType(memrefType)
                         .cast<spirv::PointerType>()
                         .getPointeeType();
  Type structElemType = pointeeType.cast<spirv::StructType>().getElementType(0);
  Type dstType;
  if (auto arrayType = structElemType.dyn_cast<spirv::ArrayType>())
    dstType = arrayType.getElementType();
  else
    dstType = structElemType.cast<spirv::RuntimeArrayType>().getElementType();

  int dstBits = dstType.getIntOrFloatBitWidth();
  assert(dstBits % srcBits == 0);

  if (srcBits == dstBits) {
    Value storeVal = adaptor.getValue();
    if (isBool)
      storeVal = castBoolToIntN(loc, storeVal, dstType, rewriter);
    rewriter.replaceOpWithNewOp<spirv::StoreOp>(
        storeOp, accessChainOp.getResult(), storeVal);
    return success();
  }

  // Since there are multi threads in the processing, the emulation will be done
  // with atomic operations. E.g., if the storing value is i8, rewrite the
  // StoreOp to
  // 1) load a 32-bit integer
  // 2) clear 8 bits in the loading value
  // 3) store 32-bit value back
  // 4) load a 32-bit integer
  // 5) modify 8 bits in the loading value
  // 6) store 32-bit value back
  // The step 1 to step 3 are done by AtomicAnd as one atomic step, and the step
  // 4 to step 6 are done by AtomicOr as another atomic step.
  assert(accessChainOp.indices().size() == 2);
  Value lastDim = accessChainOp->getOperand(accessChainOp.getNumOperands() - 1);
  Value offset = getOffsetForBitwidth(loc, lastDim, srcBits, dstBits, rewriter);

  // Create a mask to clear the destination. E.g., if it is the second i8 in
  // i32, 0xFFFF00FF is created.
  Value mask = rewriter.create<spirv::ConstantOp>(
      loc, dstType, rewriter.getIntegerAttr(dstType, (1 << srcBits) - 1));
  Value clearBitsMask =
      rewriter.create<spirv::ShiftLeftLogicalOp>(loc, dstType, mask, offset);
  clearBitsMask = rewriter.create<spirv::NotOp>(loc, dstType, clearBitsMask);

  Value storeVal = adaptor.getValue();
  if (isBool)
    storeVal = castBoolToIntN(loc, storeVal, dstType, rewriter);
  storeVal = shiftValue(loc, storeVal, offset, mask, dstBits, rewriter);
  Value adjustedPtr = adjustAccessChainForBitwidth(typeConverter, accessChainOp,
                                                   srcBits, dstBits, rewriter);
  Optional<spirv::Scope> scope = getAtomicOpScope(memrefType);
  if (!scope)
    return failure();
  Value result = rewriter.create<spirv::AtomicAndOp>(
      loc, dstType, adjustedPtr, *scope, spirv::MemorySemantics::AcquireRelease,
      clearBitsMask);
  result = rewriter.create<spirv::AtomicOrOp>(
      loc, dstType, adjustedPtr, *scope, spirv::MemorySemantics::AcquireRelease,
      storeVal);

  // The AtomicOrOp has no side effect. Since it is already inserted, we can
  // just remove the original StoreOp. Note that rewriter.replaceOp()
  // doesn't work because it only accepts that the numbers of result are the
  // same.
  rewriter.eraseOp(storeOp);

  assert(accessChainOp.use_empty());
  rewriter.eraseOp(accessChainOp);

  return success();
}

LogicalResult
StoreOpPattern::matchAndRewrite(memref::StoreOp storeOp, OpAdaptor adaptor,
                                ConversionPatternRewriter &rewriter) const {
  auto memrefType = storeOp.getMemref().getType().cast<MemRefType>();
  if (memrefType.getElementType().isSignlessInteger())
    return failure();
  auto storePtr = spirv::getElementPtr(
      *getTypeConverter<SPIRVTypeConverter>(), memrefType, adaptor.getMemref(),
      adaptor.getIndices(), storeOp.getLoc(), rewriter);

  if (!storePtr)
    return failure();

  rewriter.replaceOpWithNewOp<spirv::StoreOp>(storeOp, storePtr,
                                              adaptor.getValue());
  return success();
}

//===----------------------------------------------------------------------===//
// Pattern population
//===----------------------------------------------------------------------===//

namespace mlir {
void populateMemRefToSPIRVPatterns(SPIRVTypeConverter &typeConverter,
                                   RewritePatternSet &patterns) {
  patterns
      .add<AllocaOpPattern, AllocOpPattern, DeallocOpPattern, IntLoadOpPattern,
           IntStoreOpPattern, LoadOpPattern, StoreOpPattern>(
          typeConverter, patterns.getContext());
}
} // namespace mlir