1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
|
//===- TosaToTensor.cpp - Lowering Tosa to Tensor Dialect -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// These rewriters lower from the Tosa to the Tensor dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/TosaToTensor/TosaToTensor.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tosa/IR/TosaOps.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
using namespace mlir;
using namespace tosa;
namespace {
class SliceOpConverter : public OpRewritePattern<tosa::SliceOp> {
public:
using OpRewritePattern<tosa::SliceOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tosa::SliceOp sliceOp,
PatternRewriter &rewriter) const final {
Location loc = sliceOp.getLoc();
Value input = sliceOp.getInput();
SmallVector<int64_t> strides;
auto starts = sliceOp.getStart();
auto sizes = sliceOp.getSize();
strides.resize(sliceOp.getType().template cast<ShapedType>().getRank(), 1);
SmallVector<Value> dynSizes;
for (const auto &i : llvm::enumerate(sizes)) {
int64_t size = i.value().cast<IntegerAttr>().getInt();
size_t index = i.index();
if (size != ShapedType::kDynamicSize)
continue;
auto dim = rewriter.create<tensor::DimOp>(loc, input, index);
auto offset = rewriter.create<arith::ConstantOp>(
loc,
rewriter.getIndexAttr(starts[index].cast<IntegerAttr>().getInt()));
dynSizes.push_back(rewriter.create<arith::SubIOp>(loc, dim, offset));
}
auto newSliceOp = rewriter.create<tensor::ExtractSliceOp>(
sliceOp.getLoc(), sliceOp.getType(), input, ValueRange({}), dynSizes,
ValueRange({}), starts, sizes, rewriter.getI64ArrayAttr(strides));
rewriter.replaceOp(sliceOp, newSliceOp.getResult());
return success();
}
};
} // namespace
void mlir::tosa::populateTosaToTensorConversionPatterns(
RewritePatternSet *patterns) {
patterns->add<SliceOpConverter>(patterns->getContext());
}
|