1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
|
//===- VectorToGPU.cpp - Convert vector to GPU dialect ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements lowering of vector operations to GPU dialect ops.
//
//===----------------------------------------------------------------------===//
#include <type_traits>
#include "NvGpuSupport.h"
#include "mlir/Conversion/VectorToGPU/VectorToGPU.h"
#include "../PassDetail.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/NVGPU/IR/NVGPUDialect.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/IR/Builders.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/TypeSwitch.h"
using namespace mlir;
/// For a vector TransferOpType `xferOp`, an empty `indices` vector, and an
/// AffineMap representing offsets to apply to indices, the function fills
/// `indices` with the original indices plus the offsets. The offsets are
/// applied by taking into account the permutation map of the transfer op. If
/// the `offsetMap` has dimension placeholders, those should be provided in
/// `dimValues`.
template <typename TransferOpType>
static void getXferIndices(OpBuilder &b, TransferOpType xferOp,
AffineMap offsetMap, ArrayRef<Value> dimValues,
SmallVector<Value, 4> &indices) {
indices.append(xferOp.getIndices().begin(), xferOp.getIndices().end());
Location loc = xferOp.getLoc();
unsigned offsetsIdx = 0;
for (auto expr : xferOp.getPermutationMap().getResults()) {
if (auto dim = expr.template dyn_cast<AffineDimExpr>()) {
Value prevIdx = indices[dim.getPosition()];
SmallVector<Value, 3> dims(dimValues.begin(), dimValues.end());
dims.push_back(prevIdx);
AffineExpr d0 = b.getAffineDimExpr(offsetMap.getNumDims());
indices[dim.getPosition()] = makeComposedAffineApply(
b, loc, d0 + offsetMap.getResult(offsetsIdx++), dims);
continue;
}
}
}
// Return true if the contract op can be convert to MMA matmul.
static bool contractSupportsMMAMatrixType(vector::ContractionOp contract,
bool useNvGpu) {
if (llvm::size(contract.getMasks()) != 0)
return false;
using MapList = ArrayRef<ArrayRef<AffineExpr>>;
auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); };
AffineExpr m, n, k;
bindDims(contract.getContext(), m, n, k);
auto iteratorTypes = contract.getIteratorTypes().getValue();
if (!(isParallelIterator(iteratorTypes[0]) &&
isParallelIterator(iteratorTypes[1]) &&
isReductionIterator(iteratorTypes[2])))
return false;
// The contract needs to represent a matmul to be able to convert to
// MMAMatrix matmul.
if (!useNvGpu &&
contract.getIndexingMapsArray() != infer({{m, k}, {k, n}, {m, n}}))
return false;
if (useNvGpu &&
contract.getIndexingMapsArray() != infer({{m, k}, {n, k}, {m, n}}))
return false;
return true;
}
// Return the stide for the dimension 0 of |type| if it is a memref and has a
// constant stride.
static llvm::Optional<int64_t>
getMemrefConstantHorizontalStride(ShapedType type) {
auto memrefType = type.dyn_cast<MemRefType>();
if (!memrefType)
return false;
// If the memref is 0 or 1D the horizontal stride is 0.
if (memrefType.getRank() < 2)
return 0;
int64_t offset = 0;
SmallVector<int64_t, 2> strides;
if (failed(getStridesAndOffset(memrefType, strides, offset)) ||
strides.back() != 1)
return llvm::None;
int64_t stride = strides[strides.size() - 2];
if (stride == ShapedType::kDynamicStrideOrOffset)
return llvm::None;
return stride;
}
// Return true if the transfer op can be converted to a MMA matrix load.
static bool transferReadSupportsMMAMatrixType(vector::TransferReadOp readOp,
bool useNvGpu) {
if (readOp.getMask() || readOp.hasOutOfBoundsDim() ||
readOp.getVectorType().getRank() != 2)
return false;
if (!getMemrefConstantHorizontalStride(readOp.getShapedType()))
return false;
AffineMap map = readOp.getPermutationMap();
OpBuilder b(readOp.getContext());
AffineExpr innerDim = b.getAffineDimExpr(map.getNumDims() - 1);
AffineExpr zero = b.getAffineConstantExpr(0);
auto broadcastInnerDim = AffineMap::get(map.getNumDims(), 0, {zero, innerDim},
readOp.getContext());
if (!useNvGpu) {
// TODO: Support transpose once it is added to GPU dialect ops.
// For now we only support (d0, d1) -> (d0, d1) and (d0, d1) -> (0, d1).
return map.isMinorIdentity() || map == broadcastInnerDim;
}
return true;
}
// Return true if the transfer op can be converted to a MMA matrix store.
static bool
transferWriteSupportsMMAMatrixType(vector::TransferWriteOp writeOp) {
// TODO: support 0-d corner case.
if (writeOp.getTransferRank() == 0)
return false;
if (writeOp.getMask() || writeOp.hasOutOfBoundsDim() ||
writeOp.getVectorType().getRank() != 2)
return false;
if (!getMemrefConstantHorizontalStride(writeOp.getShapedType()))
return false;
// TODO: Support transpose once it is added to GPU dialect ops.
if (!writeOp.getPermutationMap().isMinorIdentity())
return false;
return true;
}
/// Return true if the constant is a splat to a 2D vector so that it can be
/// converted to a MMA constant matrix op.
static bool constantSupportsMMAMatrixType(arith::ConstantOp constantOp) {
auto vecType = constantOp.getType().dyn_cast<VectorType>();
if (!vecType || vecType.getRank() != 2)
return false;
return constantOp.getValue().isa<SplatElementsAttr>();
}
/// Return true if this is a broadcast from scalar to a 2D vector.
static bool broadcastSupportsMMAMatrixType(vector::BroadcastOp broadcastOp) {
return broadcastOp.getVectorType().getRank() == 2 &&
broadcastOp.getSource().getType().isa<FloatType>();
}
/// Return the MMA elementwise enum associated with `op` if it is supported.
/// Return `llvm::None` otherwise.
static llvm::Optional<gpu::MMAElementwiseOp>
convertElementwiseOpToMMA(Operation *op) {
if (isa<arith::AddFOp>(op))
return gpu::MMAElementwiseOp::ADDF;
if (isa<arith::MulFOp>(op))
return gpu::MMAElementwiseOp::MULF;
if (isa<arith::MaxFOp>(op))
return gpu::MMAElementwiseOp::MAXF;
if (isa<arith::MinFOp>(op))
return gpu::MMAElementwiseOp::MINF;
if (isa<arith::DivFOp>(op))
return gpu::MMAElementwiseOp::DIVF;
return llvm::None;
}
/// Return true if the op is supported as elementwise op on MMAMatrix type.
static bool elementwiseSupportsMMAMatrixType(Operation *op) {
return convertElementwiseOpToMMA(op).has_value();
}
static bool supportsMMaMatrixType(Operation *op, bool useNvGpu) {
if (isa<scf::ForOp, scf::YieldOp>(op))
return true;
if (auto transferRead = dyn_cast<vector::TransferReadOp>(op))
return transferReadSupportsMMAMatrixType(transferRead, useNvGpu);
if (auto transferWrite = dyn_cast<vector::TransferWriteOp>(op))
return transferWriteSupportsMMAMatrixType(transferWrite);
if (auto contract = dyn_cast<vector::ContractionOp>(op))
return contractSupportsMMAMatrixType(contract, useNvGpu);
if (auto constant = dyn_cast<arith::ConstantOp>(op))
return constantSupportsMMAMatrixType(constant);
if (auto broadcast = dyn_cast<vector::BroadcastOp>(op))
return broadcastSupportsMMAMatrixType(broadcast);
return elementwiseSupportsMMAMatrixType(op);
}
/// Return an unsorted slice handling scf.for region differently than
/// `getSlice`. In scf.for we only want to include as part of the slice elements
/// that are part of the use/def chain.
static SetVector<Operation *> getSliceContract(Operation *op,
TransitiveFilter backwardFilter,
TransitiveFilter forwardFilter) {
SetVector<Operation *> slice;
slice.insert(op);
unsigned currentIndex = 0;
SetVector<Operation *> backwardSlice;
SetVector<Operation *> forwardSlice;
while (currentIndex != slice.size()) {
auto *currentOp = (slice)[currentIndex];
// Compute and insert the backwardSlice starting from currentOp.
backwardSlice.clear();
getBackwardSlice(currentOp, &backwardSlice, backwardFilter);
slice.insert(backwardSlice.begin(), backwardSlice.end());
// Compute and insert the forwardSlice starting from currentOp.
forwardSlice.clear();
// Special case for ForOp, we don't want to include the whole region but
// only the value using the region arguments.
// TODO: We should refine this to only care about the region arguments being
// converted to matrix type.
if (auto forOp = dyn_cast<scf::ForOp>(currentOp)) {
for (Value forOpResult : forOp.getResults())
getForwardSlice(forOpResult, &forwardSlice, forwardFilter);
for (BlockArgument &arg : forOp.getRegionIterArgs())
getForwardSlice(arg, &forwardSlice, forwardFilter);
} else {
getForwardSlice(currentOp, &forwardSlice, forwardFilter);
}
slice.insert(forwardSlice.begin(), forwardSlice.end());
++currentIndex;
}
return slice;
}
// Analyze slice of operations based on convert op to figure out if the whole
// slice can be converted to MMA operations.
static SetVector<Operation *> getOpToConvert(mlir::Operation *op,
bool useNvGpu) {
auto hasVectorDest = [](Operation *op) {
return llvm::any_of(op->getResultTypes(),
[](Type t) { return t.isa<VectorType>(); });
};
auto hasVectorSrc = [](Operation *op) {
return llvm::any_of(op->getOperandTypes(),
[](Type t) { return t.isa<VectorType>(); });
};
SetVector<Operation *> opToConvert;
op->walk([&](vector::ContractionOp contract) {
if (opToConvert.contains(contract.getOperation()))
return;
SetVector<Operation *> dependentOps =
getSliceContract(contract, hasVectorDest, hasVectorSrc);
// If any instruction cannot use MMA matrix type drop the whole
// chain. MMA matrix are stored in an opaque type so they cannot be used
// by all operations.
if (llvm::any_of(dependentOps, [useNvGpu](Operation *op) {
return !supportsMMaMatrixType(op, useNvGpu);
}))
return;
opToConvert.insert(dependentOps.begin(), dependentOps.end());
});
// Sort the operations so that we can convert them in topological order.
return topologicalSort(opToConvert);
}
namespace {
// Transform contract into (m, k)x(k, n)x(m, n) form so that it can be converted
// to MMA matmul.
struct PrepareContractToGPUMMA
: public OpRewritePattern<vector::ContractionOp> {
using OpRewritePattern<vector::ContractionOp>::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ContractionOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value lhs = op.getLhs(), rhs = op.getRhs(), res = op.getAcc();
// Set up the parallel/reduction structure in right form.
using MapList = ArrayRef<ArrayRef<AffineExpr>>;
auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); };
AffineExpr m, n, k;
bindDims(rewriter.getContext(), m, n, k);
static constexpr std::array<int64_t, 2> perm = {1, 0};
auto iteratorTypes = op.getIteratorTypes().getValue();
SmallVector<AffineMap, 4> maps = op.getIndexingMapsArray();
if (!(isParallelIterator(iteratorTypes[0]) &&
isParallelIterator(iteratorTypes[1]) &&
isReductionIterator(iteratorTypes[2])))
return failure();
//
// Two outer parallel, one inner reduction (matmat flavor).
//
if (maps == infer({{m, k}, {k, n}, {m, n}})) {
// This is the classical row-major matmul, nothing to do.
return failure();
}
if (maps == infer({{m, k}, {n, k}, {m, n}})) {
rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
} else if (maps == infer({{k, m}, {k, n}, {m, n}})) {
lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
} else if (maps == infer({{k, m}, {n, k}, {m, n}})) {
rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
} else if (maps == infer({{m, k}, {k, n}, {n, m}})) {
std::swap(rhs, lhs);
rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
} else if (maps == infer({{m, k}, {n, k}, {n, m}})) {
std::swap(rhs, lhs);
rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
} else if (maps == infer({{k, m}, {k, n}, {n, m}})) {
std::swap(lhs, rhs);
lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
} else if (maps == infer({{k, m}, {n, k}, {n, m}})) {
std::swap(lhs, rhs);
} else {
return failure();
}
rewriter.replaceOpWithNewOp<vector::ContractionOp>(
op, lhs, rhs, res,
rewriter.getAffineMapArrayAttr(infer({{m, k}, {k, n}, {m, n}})),
op.getIteratorTypes());
return success();
}
};
// Merge transpose op into the transfer read op. Transpose are not supported on
// MMA types but MMA load can transpose the matrix when loading.
struct CombineTransferReadOpTranspose final
: public OpRewritePattern<vector::TransposeOp> {
using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransposeOp op,
PatternRewriter &rewriter) const override {
auto transferReadOp =
op.getVector().getDefiningOp<vector::TransferReadOp>();
if (!transferReadOp)
return failure();
// TODO: support 0-d corner case.
if (transferReadOp.getTransferRank() == 0)
return failure();
if (transferReadOp.getMask() || transferReadOp.hasOutOfBoundsDim())
return failure();
SmallVector<int64_t, 2> perm;
op.getTransp(perm);
SmallVector<unsigned, 2> permU;
for (int64_t o : perm)
permU.push_back(unsigned(o));
AffineMap permutationMap =
AffineMap::getPermutationMap(permU, op.getContext());
AffineMap newMap =
permutationMap.compose(transferReadOp.getPermutationMap());
rewriter.replaceOpWithNewOp<vector::TransferReadOp>(
op, op.getType(), transferReadOp.getSource(),
transferReadOp.getIndices(), AffineMapAttr::get(newMap),
transferReadOp.getPadding(), transferReadOp.getMask(),
transferReadOp.getInBoundsAttr());
return success();
}
};
} // namespace
// MMA types have different layout based on how they are used in matmul ops.
// Figure the right layout to use by looking at op uses.
// TODO: Change the GPU dialect to abstract the layout at the this level and
// only care about it during lowering to NVVM.
template <typename OpTy>
static const char *inferFragType(OpTy op) {
for (Operation *users : op->getUsers()) {
auto contract = dyn_cast<vector::ContractionOp>(users);
if (!contract)
continue;
if (contract.getLhs() == op.getResult())
return "AOp";
if (contract.getRhs() == op.getResult())
return "BOp";
}
return "COp";
}
static void convertTransferReadOp(vector::TransferReadOp op,
llvm::DenseMap<Value, Value> &valueMapping) {
assert(op.getTransferRank() > 0 && "unexpected 0-d transfer");
assert(transferReadSupportsMMAMatrixType(op, /*useNvGpu=*/false));
Optional<int64_t> stride =
getMemrefConstantHorizontalStride(op.getShapedType());
AffineMap map = op.getPermutationMap();
// Handle broadcast by setting the stride to 0.
if (map.getResult(0).isa<AffineConstantExpr>()) {
assert(map.getResult(0).cast<AffineConstantExpr>().getValue() == 0);
stride = 0;
}
assert(stride);
const char *fragType = inferFragType(op);
gpu::MMAMatrixType type =
gpu::MMAMatrixType::get(op.getVectorType().getShape(),
op.getVectorType().getElementType(), fragType);
OpBuilder b(op);
Value load = b.create<gpu::SubgroupMmaLoadMatrixOp>(
op.getLoc(), type, op.getSource(), op.getIndices(),
b.getIndexAttr(*stride));
valueMapping[op.getResult()] = load;
}
static void convertTransferWriteOp(vector::TransferWriteOp op,
llvm::DenseMap<Value, Value> &valueMapping) {
assert(transferWriteSupportsMMAMatrixType(op));
Optional<int64_t> stride =
getMemrefConstantHorizontalStride(op.getShapedType());
assert(stride);
OpBuilder b(op);
Value matrix = valueMapping.find(op.getVector())->second;
b.create<gpu::SubgroupMmaStoreMatrixOp>(op.getLoc(), matrix, op.getSource(),
op.getIndices(),
b.getIndexAttr(*stride));
op.erase();
}
/// Returns the vector type which represents a matrix fragment.
static VectorType
getMmaSyncVectorOperandType(const nvgpu::FragmentElementInfo ®Info) {
SmallVector<int64_t> shape{regInfo.numRegistersPerFragment,
regInfo.elementsPerRegister};
Type elType = regInfo.registerLLVMType;
if (auto vecType = elType.dyn_cast<VectorType>())
elType = vecType.getElementType();
return VectorType::get(shape, elType);
}
/// Convert a 2D splat ConstantOp to a SubgroupMmaConstantMatrix op.
static LogicalResult
convertConstantOpMmaSync(arith::ConstantOp op,
llvm::DenseMap<Value, Value> &valueMapping) {
OpBuilder b(op);
FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
nvgpu::getWarpMatrixInfo(op);
if (failed(warpMatrixInfo))
return failure();
FailureOr<nvgpu::FragmentElementInfo> regInfo =
nvgpu::getMmaSyncRegisterType(*warpMatrixInfo);
if (failed(regInfo))
return failure();
VectorType vectorType = getMmaSyncVectorOperandType(*regInfo);
auto dense = op.getValue().dyn_cast<SplatElementsAttr>();
if (!dense)
return failure();
Value result = b.create<arith::ConstantOp>(
op.getLoc(), vectorType,
DenseElementsAttr::get(vectorType, dense.getSplatValue<Attribute>()));
valueMapping[op.getResult()] = result;
return success();
}
static LogicalResult
creatLdMatrixCompatibleLoads(vector::TransferReadOp op, OpBuilder &builder,
llvm::DenseMap<Value, Value> &valueMapping) {
Location loc = op->getLoc();
FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
nvgpu::getWarpMatrixInfo(op);
if (failed(warpMatrixInfo))
return failure();
FailureOr<nvgpu::FragmentElementInfo> regInfo =
nvgpu::getMmaSyncRegisterType(*warpMatrixInfo);
if (failed(regInfo))
return failure();
FailureOr<nvgpu::LdMatrixParams> params = nvgpu::getLdMatrixParams(
*warpMatrixInfo,
/*transpose=*/!op.getPermutationMap().isMinorIdentity());
if (failed(params)) {
return op->emitError()
<< "failed to convert vector.transfer_read to ldmatrix; this op "
"likely "
"should not be converted to a nvgpu.ldmatrix call.";
}
// Adjust the load offset.
auto laneId = builder.create<gpu::LaneIdOp>(loc);
FailureOr<AffineMap> offsets =
nvgpu::getLaneIdToLdMatrixMatrixCoord(loc, builder, *params);
if (failed(offsets))
return failure();
VectorType vectorType = getMmaSyncVectorOperandType(*regInfo);
SmallVector<Value, 4> indices;
getXferIndices<vector::TransferReadOp>(builder, op, *offsets, {laneId},
indices);
nvgpu::LdMatrixOp newOp = builder.create<nvgpu::LdMatrixOp>(
loc, vectorType, op.getSource(), indices,
!op.getPermutationMap().isMinorIdentity(), params->numTiles);
valueMapping[op] = newOp->getResult(0);
return success();
}
static LogicalResult
createNonLdMatrixLoads(vector::TransferReadOp op, OpBuilder &builder,
llvm::DenseMap<Value, Value> &valueMapping) {
Location loc = op.getLoc();
FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
nvgpu::getWarpMatrixInfo(op);
if (failed(warpMatrixInfo))
return failure();
FailureOr<nvgpu::FragmentElementInfo> regInfo =
nvgpu::getMmaSyncRegisterType(*warpMatrixInfo);
if (failed(regInfo)) {
op->emitError() << "Failed to deduce register fragment type during "
"conversion to distributed non-ldmatrix compatible load";
return failure();
}
Value laneId = builder.create<gpu::LaneIdOp>(loc);
SmallVector<Value, 4> elements;
// This is the individual element type.
Type loadedElType = regInfo->registerLLVMType;
VectorType vectorType = getMmaSyncVectorOperandType(*regInfo);
Value fill = builder.create<arith::ConstantOp>(
op.getLoc(), vectorType.getElementType(),
builder.getZeroAttr(vectorType.getElementType()));
Value result = builder.create<vector::SplatOp>(op.getLoc(), fill, vectorType);
bool isTransposeLoad = !op.getPermutationMap().isMinorIdentity();
// If we are not transposing, then we can use vectorized loads. Otherwise, we
// must load each element individually.
if (!isTransposeLoad) {
if (!loadedElType.isa<VectorType>()) {
loadedElType = VectorType::get({1}, loadedElType);
}
for (int i = 0; i < vectorType.getShape()[0]; i++) {
FailureOr<AffineMap> coords = nvgpu::getLaneIdAndValueIdToOperandCoord(
op.getLoc(), builder, *warpMatrixInfo);
if (failed(coords))
return failure();
Value logicalValueId = builder.create<arith::ConstantOp>(
loc, builder.getIndexType(),
builder.getIndexAttr(i * regInfo->elementsPerRegister));
SmallVector<Value, 4> newIndices;
getXferIndices<vector::TransferReadOp>(
builder, op, *coords, {laneId, logicalValueId}, newIndices);
Value el = builder.create<vector::LoadOp>(loc, loadedElType,
op.getSource(), newIndices);
result = builder.create<vector::InsertOp>(loc, el, result,
builder.getI64ArrayAttr(i));
}
} else {
if (auto vecType = loadedElType.dyn_cast<VectorType>()) {
loadedElType = vecType.getElementType();
}
for (int i = 0; i < vectorType.getShape()[0]; i++) {
for (unsigned innerIdx = 0; innerIdx < vectorType.getShape()[1];
innerIdx++) {
Value logicalValueId = builder.create<arith::ConstantOp>(
loc, builder.getIndexType(),
builder.getIndexAttr(i * regInfo->elementsPerRegister + innerIdx));
FailureOr<AffineMap> coords = nvgpu::getLaneIdAndValueIdToOperandCoord(
op.getLoc(), builder, *warpMatrixInfo);
if (failed(coords))
return failure();
SmallVector<Value, 4> newIndices;
getXferIndices<vector::TransferReadOp>(
builder, op, *coords, {laneId, logicalValueId}, newIndices);
Value el = builder.create<memref::LoadOp>(op.getLoc(), loadedElType,
op.getSource(), newIndices);
result = builder.create<vector::InsertOp>(
op.getLoc(), el, result, builder.getI64ArrayAttr({i, innerIdx}));
}
}
}
valueMapping[op.getResult()] = result;
return success();
}
/// Converts a `vector.transfer_read` operation directly to either a
/// `vector.load` or a `nvgpu.ldmatrix` operation. This function should only be
/// used when converting to `nvgpu.mma.sync` operations.
static LogicalResult
convertTransferReadToLoads(vector::TransferReadOp op,
llvm::DenseMap<Value, Value> &valueMapping) {
OpBuilder b(op);
FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
nvgpu::getWarpMatrixInfo(op);
if (failed(warpMatrixInfo))
return failure();
bool isLdMatrixCompatible =
op.getSource().getType().cast<MemRefType>().getMemorySpaceAsInt() == 3 &&
nvgpu::inferTileWidthInBits(*warpMatrixInfo) == 128;
VectorType vecTy = op.getVectorType();
int64_t bitWidth = vecTy.getElementType().getIntOrFloatBitWidth();
// When we are transposing the B operand, ldmatrix will only work if we have
// at least 8 rows to read and the width to read for the transpose is 128
// bits.
if (!op.getPermutationMap().isMinorIdentity() &&
(bitWidth != 16 || vecTy.getDimSize(1) < 8 ||
vecTy.getDimSize(0) * bitWidth < 128))
isLdMatrixCompatible = false;
if (!isLdMatrixCompatible)
return createNonLdMatrixLoads(op, b, valueMapping);
return creatLdMatrixCompatibleLoads(op, b, valueMapping);
}
static LogicalResult
convertTransferWriteToStores(vector::TransferWriteOp op,
llvm::DenseMap<Value, Value> &valueMapping) {
OpBuilder b(op);
Location loc = op->getLoc();
Value matrix = valueMapping.find(op.getVector())->second;
FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
nvgpu::getWarpMatrixInfo(op);
if (failed(warpMatrixInfo))
return failure();
FailureOr<nvgpu::FragmentElementInfo> regInfo =
nvgpu::getMmaSyncRegisterType(*warpMatrixInfo);
if (failed(regInfo))
return failure();
VectorType vectorType = getMmaSyncVectorOperandType(*regInfo);
Value laneId = b.create<gpu::LaneIdOp>(loc);
for (unsigned i = 0; i < vectorType.getShape()[0]; i++) {
Value logicalValueId = b.create<arith::ConstantOp>(
loc, b.getIndexType(),
b.getIndexAttr(i * regInfo->elementsPerRegister));
FailureOr<AffineMap> coords = nvgpu::getLaneIdAndValueIdToOperandCoord(
op.getLoc(), b, *warpMatrixInfo);
if (failed(coords))
return failure();
Value el = b.create<vector::ExtractOp>(loc, matrix, ArrayRef<int64_t>{i});
SmallVector<Value, 4> newIndices;
getXferIndices<vector::TransferWriteOp>(
b, op, *coords, {laneId, logicalValueId}, newIndices);
b.create<vector::StoreOp>(loc, el, op.getSource(), newIndices);
}
op->erase();
return success();
}
static void convertContractOp(vector::ContractionOp op,
llvm::DenseMap<Value, Value> &valueMapping) {
OpBuilder b(op);
Value opA = valueMapping.find(op.getLhs())->second;
Value opB = valueMapping.find(op.getRhs())->second;
Value opC = valueMapping.find(op.getAcc())->second;
Value matmul = b.create<gpu::SubgroupMmaComputeOp>(op.getLoc(), opC.getType(),
opA, opB, opC);
valueMapping[op.getResult()] = matmul;
}
static LogicalResult
convertContractOpToMmaSync(vector::ContractionOp op,
llvm::DenseMap<Value, Value> &valueMapping) {
OpBuilder b(op);
Value opA = valueMapping.find(op.getLhs())->second;
Value opB = valueMapping.find(op.getRhs())->second;
Value opC = valueMapping.find(op.getAcc())->second;
int64_t m = op.getLhs().getType().cast<VectorType>().getShape()[0];
int64_t n = op.getRhs().getType().cast<VectorType>().getShape()[0];
int64_t k = op.getLhs().getType().cast<VectorType>().getShape()[1];
Value matmul = b.create<nvgpu::MmaSyncOp>(
op.getLoc(), opC.getType(), opA, opB, opC, b.getI64ArrayAttr({m, n, k}));
valueMapping[op.getResult()] = matmul;
return success();
}
/// Convert a 2D splat ConstantOp to a SubgroupMmaConstantMatrix op.
static void convertConstantOp(arith::ConstantOp op,
llvm::DenseMap<Value, Value> &valueMapping) {
assert(constantSupportsMMAMatrixType(op));
OpBuilder b(op);
Attribute splat =
op.getValue().cast<SplatElementsAttr>().getSplatValue<Attribute>();
auto scalarConstant =
b.create<arith::ConstantOp>(op.getLoc(), splat.getType(), splat);
const char *fragType = inferFragType(op);
auto vecType = op.getType().cast<VectorType>();
gpu::MMAMatrixType type = gpu::MMAMatrixType::get(
vecType.getShape(), vecType.getElementType(), llvm::StringRef(fragType));
auto matrix = b.create<gpu::SubgroupMmaConstantMatrixOp>(op.getLoc(), type,
scalarConstant);
valueMapping[op.getResult()] = matrix;
}
/// Convert a vector.broadcast from scalar to a SubgroupMmaConstantMatrix op.
static void convertBroadcastOp(vector::BroadcastOp op,
llvm::DenseMap<Value, Value> &valueMapping) {
assert(broadcastSupportsMMAMatrixType(op));
OpBuilder b(op);
const char *fragType = inferFragType(op);
auto vecType = op.getVectorType();
gpu::MMAMatrixType type = gpu::MMAMatrixType::get(
vecType.getShape(), vecType.getElementType(), llvm::StringRef(fragType));
auto matrix = b.create<gpu::SubgroupMmaConstantMatrixOp>(op.getLoc(), type,
op.getSource());
valueMapping[op.getResult()] = matrix;
}
// Replace ForOp with a new ForOp with extra operands. The YieldOp is not
// updated and needs to be updated separatly for the loop to be correct.
static scf::ForOp replaceForOpWithNewSignature(OpBuilder &b, scf::ForOp loop,
ValueRange newIterOperands) {
// Create a new loop before the existing one, with the extra operands.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(loop);
auto operands = llvm::to_vector<4>(loop.getIterOperands());
operands.append(newIterOperands.begin(), newIterOperands.end());
scf::ForOp newLoop =
b.create<scf::ForOp>(loop.getLoc(), loop.getLowerBound(),
loop.getUpperBound(), loop.getStep(), operands);
newLoop.getBody()->erase();
newLoop.getLoopBody().getBlocks().splice(
newLoop.getLoopBody().getBlocks().begin(),
loop.getLoopBody().getBlocks());
for (Value operand : newIterOperands)
newLoop.getBody()->addArgument(operand.getType(), operand.getLoc());
for (auto it : llvm::zip(loop.getResults(), newLoop.getResults().take_front(
loop.getNumResults())))
std::get<0>(it).replaceAllUsesWith(std::get<1>(it));
loop.erase();
return newLoop;
}
static void convertForOp(scf::ForOp op,
llvm::DenseMap<Value, Value> &valueMapping) {
SmallVector<Value> newOperands;
SmallVector<std::pair<size_t, size_t>> argMapping;
for (const auto &operand : llvm::enumerate(op.getIterOperands())) {
auto it = valueMapping.find(operand.value());
if (it == valueMapping.end())
continue;
argMapping.push_back(std::make_pair(
operand.index(), op.getNumIterOperands() + newOperands.size()));
newOperands.push_back(it->second);
}
OpBuilder b(op);
scf::ForOp newForOp = replaceForOpWithNewSignature(b, op, newOperands);
Block &loopBody = *newForOp.getBody();
for (auto mapping : argMapping) {
valueMapping[newForOp.getResult(mapping.first)] =
newForOp.getResult(mapping.second);
valueMapping[loopBody.getArgument(mapping.first +
newForOp.getNumInductionVars())] =
loopBody.getArgument(mapping.second + newForOp.getNumInductionVars());
}
}
static void convertYieldOp(scf::YieldOp op,
llvm::DenseMap<Value, Value> &valueMapping) {
OpBuilder b(op);
auto loop = cast<scf::ForOp>(op->getParentOp());
auto yieldOperands = llvm::to_vector<4>(op.getOperands());
for (const auto &operand : llvm::enumerate(op.getOperands())) {
auto it = valueMapping.find(operand.value());
if (it == valueMapping.end())
continue;
// Replace the yield of old value with the for op argument to make it easier
// to remove the dead code.
yieldOperands[operand.index()] = loop.getIterOperands()[operand.index()];
yieldOperands.push_back(it->second);
}
b.create<scf::YieldOp>(op.getLoc(), yieldOperands);
op.erase();
}
/// Convert an elementwise op to the equivalent elementwise op on MMA matrix.
static void convertElementwiseOp(Operation *op, gpu::MMAElementwiseOp opType,
llvm::DenseMap<Value, Value> &valueMapping) {
OpBuilder b(op);
SmallVector<Value> matrixOperands;
for (Value operand : op->getOperands())
matrixOperands.push_back(valueMapping.find(operand)->second);
Value newOp = b.create<gpu::SubgroupMmaElementwiseOp>(
op->getLoc(), matrixOperands[0].getType(), matrixOperands, opType);
valueMapping[op->getResult(0)] = newOp;
}
void mlir::populatePrepareVectorToMMAPatterns(RewritePatternSet &patterns,
bool useNvGpu) {
if (!useNvGpu) {
patterns.add<PrepareContractToGPUMMA, CombineTransferReadOpTranspose>(
patterns.getContext());
return;
}
patterns
.add<nvgpu::PrepareContractToGPUMMASync, CombineTransferReadOpTranspose>(
patterns.getContext());
}
void mlir::convertVectorToMMAOps(Operation *rootOp) {
SetVector<Operation *> ops = getOpToConvert(rootOp, /*useNvGpu=*/false);
llvm::DenseMap<Value, Value> valueMapping;
for (Operation *op : ops) {
if (auto transferRead = dyn_cast<vector::TransferReadOp>(op)) {
convertTransferReadOp(transferRead, valueMapping);
} else if (auto transferWrite = dyn_cast<vector::TransferWriteOp>(op)) {
convertTransferWriteOp(transferWrite, valueMapping);
} else if (auto contractOp = dyn_cast<vector::ContractionOp>(op)) {
convertContractOp(contractOp, valueMapping);
} else if (auto constantOp = dyn_cast<arith::ConstantOp>(op)) {
convertConstantOp(constantOp, valueMapping);
} else if (auto broadcastOp = dyn_cast<vector::BroadcastOp>(op)) {
convertBroadcastOp(broadcastOp, valueMapping);
} else if (auto forOp = dyn_cast<scf::ForOp>(op)) {
convertForOp(forOp, valueMapping);
} else if (auto yiledOp = dyn_cast<scf::YieldOp>(op)) {
convertYieldOp(yiledOp, valueMapping);
} else if (auto elementwiseType = convertElementwiseOpToMMA(op)) {
convertElementwiseOp(op, *elementwiseType, valueMapping);
}
}
}
LogicalResult mlir::convertVectorToNVVMCompatibleMMASync(Operation *rootOp) {
SetVector<Operation *> ops = getOpToConvert(rootOp, /*useNvGpu=*/true);
llvm::DenseMap<Value, Value> valueMapping;
for (Operation *op : ops) {
if (llvm::TypeSwitch<Operation *, LogicalResult>(op)
.Case([&](vector::TransferReadOp transferReadOp) {
return convertTransferReadToLoads(transferReadOp, valueMapping);
})
.Case([&](vector::TransferWriteOp transferWriteOp) {
return convertTransferWriteToStores(transferWriteOp,
valueMapping);
})
.Case([&](vector::ContractionOp contractionOp) {
return convertContractOpToMmaSync(contractionOp, valueMapping);
})
.Case([&](scf::ForOp forOp) {
convertForOp(forOp, valueMapping);
return success();
})
.Case([&](scf::YieldOp yieldOp) {
convertYieldOp(yieldOp, valueMapping);
return success();
})
.Case([&](arith::ConstantOp constOp) {
return convertConstantOpMmaSync(constOp, valueMapping);
})
.Default([&](Operation *op) {
op->emitError() << "unhandled vector to mma type: " << *op;
return failure();
})
.failed()) {
op->emitError() << "Failed to convert op " << *op;
return failure();
}
}
return success();
}
namespace {
struct ConvertVectorToGPUPass
: public ConvertVectorToGPUBase<ConvertVectorToGPUPass> {
explicit ConvertVectorToGPUPass(bool useNvGpu_) {
useNvGpu.setValue(useNvGpu_);
}
void runOnOperation() override {
RewritePatternSet patterns(&getContext());
populatePrepareVectorToMMAPatterns(patterns, useNvGpu.getValue());
if (failed(
applyPatternsAndFoldGreedily(getOperation(), std::move(patterns))))
return signalPassFailure();
if (useNvGpu.getValue()) {
if (failed(convertVectorToNVVMCompatibleMMASync(getOperation())))
return signalPassFailure();
}
(void)convertVectorToMMAOps(getOperation());
}
};
} // namespace
std::unique_ptr<Pass> mlir::createConvertVectorToGPUPass(bool useNvGpu) {
return std::make_unique<ConvertVectorToGPUPass>(useNvGpu);
}
|