File: VectorToGPU.cpp

package info (click to toggle)
llvm-toolchain-15 1%3A15.0.6-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,554,644 kB
  • sloc: cpp: 5,922,452; ansic: 1,012,136; asm: 674,362; python: 191,568; objc: 73,855; f90: 42,327; lisp: 31,913; pascal: 11,973; javascript: 10,144; sh: 9,421; perl: 7,447; ml: 5,527; awk: 3,523; makefile: 2,520; xml: 885; cs: 573; fortran: 567
file content (911 lines) | stat: -rw-r--r-- 36,823 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
//===- VectorToGPU.cpp - Convert vector to GPU dialect ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements lowering of vector operations to GPU dialect ops.
//
//===----------------------------------------------------------------------===//

#include <type_traits>

#include "NvGpuSupport.h"
#include "mlir/Conversion/VectorToGPU/VectorToGPU.h"

#include "../PassDetail.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/NVGPU/IR/NVGPUDialect.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/IR/Builders.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/TypeSwitch.h"

using namespace mlir;

/// For a vector TransferOpType `xferOp`, an empty `indices` vector, and an
/// AffineMap representing offsets to apply to indices, the function fills
/// `indices` with the original indices plus the offsets. The offsets are
/// applied by taking into account the permutation map of the transfer op. If
/// the `offsetMap` has dimension placeholders, those should be provided in
/// `dimValues`.
template <typename TransferOpType>
static void getXferIndices(OpBuilder &b, TransferOpType xferOp,
                           AffineMap offsetMap, ArrayRef<Value> dimValues,
                           SmallVector<Value, 4> &indices) {
  indices.append(xferOp.getIndices().begin(), xferOp.getIndices().end());
  Location loc = xferOp.getLoc();
  unsigned offsetsIdx = 0;
  for (auto expr : xferOp.getPermutationMap().getResults()) {
    if (auto dim = expr.template dyn_cast<AffineDimExpr>()) {
      Value prevIdx = indices[dim.getPosition()];
      SmallVector<Value, 3> dims(dimValues.begin(), dimValues.end());
      dims.push_back(prevIdx);
      AffineExpr d0 = b.getAffineDimExpr(offsetMap.getNumDims());
      indices[dim.getPosition()] = makeComposedAffineApply(
          b, loc, d0 + offsetMap.getResult(offsetsIdx++), dims);
      continue;
    }
  }
}

// Return true if the contract op can be convert to MMA matmul.
static bool contractSupportsMMAMatrixType(vector::ContractionOp contract,
                                          bool useNvGpu) {
  if (llvm::size(contract.getMasks()) != 0)
    return false;

  using MapList = ArrayRef<ArrayRef<AffineExpr>>;
  auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); };
  AffineExpr m, n, k;
  bindDims(contract.getContext(), m, n, k);
  auto iteratorTypes = contract.getIteratorTypes().getValue();
  if (!(isParallelIterator(iteratorTypes[0]) &&
        isParallelIterator(iteratorTypes[1]) &&
        isReductionIterator(iteratorTypes[2])))
    return false;

  // The contract needs to represent a matmul to be able to convert to
  // MMAMatrix matmul.
  if (!useNvGpu &&
      contract.getIndexingMapsArray() != infer({{m, k}, {k, n}, {m, n}}))
    return false;
  if (useNvGpu &&
      contract.getIndexingMapsArray() != infer({{m, k}, {n, k}, {m, n}}))
    return false;

  return true;
}

// Return the stide for the dimension 0 of |type| if it is a memref and has a
// constant stride.
static llvm::Optional<int64_t>
getMemrefConstantHorizontalStride(ShapedType type) {
  auto memrefType = type.dyn_cast<MemRefType>();
  if (!memrefType)
    return false;
  // If the memref is 0 or 1D the horizontal stride is 0.
  if (memrefType.getRank() < 2)
    return 0;
  int64_t offset = 0;
  SmallVector<int64_t, 2> strides;
  if (failed(getStridesAndOffset(memrefType, strides, offset)) ||
      strides.back() != 1)
    return llvm::None;
  int64_t stride = strides[strides.size() - 2];
  if (stride == ShapedType::kDynamicStrideOrOffset)
    return llvm::None;
  return stride;
}

// Return true if the transfer op can be converted to a MMA matrix load.
static bool transferReadSupportsMMAMatrixType(vector::TransferReadOp readOp,
                                              bool useNvGpu) {
  if (readOp.getMask() || readOp.hasOutOfBoundsDim() ||
      readOp.getVectorType().getRank() != 2)
    return false;
  if (!getMemrefConstantHorizontalStride(readOp.getShapedType()))
    return false;
  AffineMap map = readOp.getPermutationMap();
  OpBuilder b(readOp.getContext());
  AffineExpr innerDim = b.getAffineDimExpr(map.getNumDims() - 1);
  AffineExpr zero = b.getAffineConstantExpr(0);
  auto broadcastInnerDim = AffineMap::get(map.getNumDims(), 0, {zero, innerDim},
                                          readOp.getContext());

  if (!useNvGpu) {
    // TODO: Support transpose once it is added to GPU dialect ops.
    // For now we only support (d0, d1) -> (d0, d1) and (d0, d1) -> (0, d1).
    return map.isMinorIdentity() || map == broadcastInnerDim;
  }

  return true;
}

// Return true if the transfer op can be converted to a MMA matrix store.
static bool
transferWriteSupportsMMAMatrixType(vector::TransferWriteOp writeOp) {
  // TODO: support 0-d corner case.
  if (writeOp.getTransferRank() == 0)
    return false;

  if (writeOp.getMask() || writeOp.hasOutOfBoundsDim() ||
      writeOp.getVectorType().getRank() != 2)
    return false;
  if (!getMemrefConstantHorizontalStride(writeOp.getShapedType()))
    return false;
  // TODO: Support transpose once it is added to GPU dialect ops.
  if (!writeOp.getPermutationMap().isMinorIdentity())
    return false;
  return true;
}

/// Return true if the constant is a splat to a 2D vector so that it can be
/// converted to a MMA constant matrix op.
static bool constantSupportsMMAMatrixType(arith::ConstantOp constantOp) {
  auto vecType = constantOp.getType().dyn_cast<VectorType>();
  if (!vecType || vecType.getRank() != 2)
    return false;
  return constantOp.getValue().isa<SplatElementsAttr>();
}

/// Return true if this is a broadcast from scalar to a 2D vector.
static bool broadcastSupportsMMAMatrixType(vector::BroadcastOp broadcastOp) {
  return broadcastOp.getVectorType().getRank() == 2 &&
         broadcastOp.getSource().getType().isa<FloatType>();
}

/// Return the MMA elementwise enum associated with `op` if it is supported.
/// Return `llvm::None` otherwise.
static llvm::Optional<gpu::MMAElementwiseOp>
convertElementwiseOpToMMA(Operation *op) {
  if (isa<arith::AddFOp>(op))
    return gpu::MMAElementwiseOp::ADDF;
  if (isa<arith::MulFOp>(op))
    return gpu::MMAElementwiseOp::MULF;
  if (isa<arith::MaxFOp>(op))
    return gpu::MMAElementwiseOp::MAXF;
  if (isa<arith::MinFOp>(op))
    return gpu::MMAElementwiseOp::MINF;
  if (isa<arith::DivFOp>(op))
    return gpu::MMAElementwiseOp::DIVF;
  return llvm::None;
}

/// Return true if the op is supported as elementwise op on MMAMatrix type.
static bool elementwiseSupportsMMAMatrixType(Operation *op) {
  return convertElementwiseOpToMMA(op).has_value();
}

static bool supportsMMaMatrixType(Operation *op, bool useNvGpu) {
  if (isa<scf::ForOp, scf::YieldOp>(op))
    return true;
  if (auto transferRead = dyn_cast<vector::TransferReadOp>(op))
    return transferReadSupportsMMAMatrixType(transferRead, useNvGpu);
  if (auto transferWrite = dyn_cast<vector::TransferWriteOp>(op))
    return transferWriteSupportsMMAMatrixType(transferWrite);
  if (auto contract = dyn_cast<vector::ContractionOp>(op))
    return contractSupportsMMAMatrixType(contract, useNvGpu);
  if (auto constant = dyn_cast<arith::ConstantOp>(op))
    return constantSupportsMMAMatrixType(constant);
  if (auto broadcast = dyn_cast<vector::BroadcastOp>(op))
    return broadcastSupportsMMAMatrixType(broadcast);
  return elementwiseSupportsMMAMatrixType(op);
}

/// Return an unsorted slice handling scf.for region differently than
/// `getSlice`. In scf.for we only want to include as part of the slice elements
/// that are part of the use/def chain.
static SetVector<Operation *> getSliceContract(Operation *op,
                                               TransitiveFilter backwardFilter,
                                               TransitiveFilter forwardFilter) {
  SetVector<Operation *> slice;
  slice.insert(op);
  unsigned currentIndex = 0;
  SetVector<Operation *> backwardSlice;
  SetVector<Operation *> forwardSlice;
  while (currentIndex != slice.size()) {
    auto *currentOp = (slice)[currentIndex];
    // Compute and insert the backwardSlice starting from currentOp.
    backwardSlice.clear();
    getBackwardSlice(currentOp, &backwardSlice, backwardFilter);
    slice.insert(backwardSlice.begin(), backwardSlice.end());

    // Compute and insert the forwardSlice starting from currentOp.
    forwardSlice.clear();
    // Special case for ForOp, we don't want to include the whole region but
    // only the value using the region arguments.
    // TODO: We should refine this to only care about the region arguments being
    // converted to matrix type.
    if (auto forOp = dyn_cast<scf::ForOp>(currentOp)) {
      for (Value forOpResult : forOp.getResults())
        getForwardSlice(forOpResult, &forwardSlice, forwardFilter);
      for (BlockArgument &arg : forOp.getRegionIterArgs())
        getForwardSlice(arg, &forwardSlice, forwardFilter);
    } else {
      getForwardSlice(currentOp, &forwardSlice, forwardFilter);
    }
    slice.insert(forwardSlice.begin(), forwardSlice.end());
    ++currentIndex;
  }
  return slice;
}

// Analyze slice of operations based on convert op to figure out if the whole
// slice can be converted to MMA operations.
static SetVector<Operation *> getOpToConvert(mlir::Operation *op,
                                             bool useNvGpu) {
  auto hasVectorDest = [](Operation *op) {
    return llvm::any_of(op->getResultTypes(),
                        [](Type t) { return t.isa<VectorType>(); });
  };
  auto hasVectorSrc = [](Operation *op) {
    return llvm::any_of(op->getOperandTypes(),
                        [](Type t) { return t.isa<VectorType>(); });
  };
  SetVector<Operation *> opToConvert;
  op->walk([&](vector::ContractionOp contract) {
    if (opToConvert.contains(contract.getOperation()))
      return;
    SetVector<Operation *> dependentOps =
        getSliceContract(contract, hasVectorDest, hasVectorSrc);
    // If any instruction cannot use MMA matrix type drop the whole
    // chain. MMA matrix are stored in an opaque type so they cannot be used
    // by all operations.
    if (llvm::any_of(dependentOps, [useNvGpu](Operation *op) {
          return !supportsMMaMatrixType(op, useNvGpu);
        }))
      return;
    opToConvert.insert(dependentOps.begin(), dependentOps.end());
  });
  // Sort the operations so that we can convert them in topological order.
  return topologicalSort(opToConvert);
}

namespace {
// Transform contract into (m, k)x(k, n)x(m, n) form so that it can be converted
// to MMA matmul.
struct PrepareContractToGPUMMA
    : public OpRewritePattern<vector::ContractionOp> {
  using OpRewritePattern<vector::ContractionOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(vector::ContractionOp op,
                                PatternRewriter &rewriter) const override {
    Location loc = op.getLoc();
    Value lhs = op.getLhs(), rhs = op.getRhs(), res = op.getAcc();

    // Set up the parallel/reduction structure in right form.
    using MapList = ArrayRef<ArrayRef<AffineExpr>>;
    auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); };
    AffineExpr m, n, k;
    bindDims(rewriter.getContext(), m, n, k);
    static constexpr std::array<int64_t, 2> perm = {1, 0};
    auto iteratorTypes = op.getIteratorTypes().getValue();
    SmallVector<AffineMap, 4> maps = op.getIndexingMapsArray();
    if (!(isParallelIterator(iteratorTypes[0]) &&
          isParallelIterator(iteratorTypes[1]) &&
          isReductionIterator(iteratorTypes[2])))
      return failure();
    //
    // Two outer parallel, one inner reduction (matmat flavor).
    //
    if (maps == infer({{m, k}, {k, n}, {m, n}})) {
      // This is the classical row-major matmul, nothing to do.
      return failure();
    }
    if (maps == infer({{m, k}, {n, k}, {m, n}})) {
      rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
    } else if (maps == infer({{k, m}, {k, n}, {m, n}})) {
      lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
    } else if (maps == infer({{k, m}, {n, k}, {m, n}})) {
      rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
      lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
    } else if (maps == infer({{m, k}, {k, n}, {n, m}})) {
      std::swap(rhs, lhs);
      rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
      lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
    } else if (maps == infer({{m, k}, {n, k}, {n, m}})) {
      std::swap(rhs, lhs);
      rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
    } else if (maps == infer({{k, m}, {k, n}, {n, m}})) {
      std::swap(lhs, rhs);
      lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
    } else if (maps == infer({{k, m}, {n, k}, {n, m}})) {
      std::swap(lhs, rhs);
    } else {
      return failure();
    }
    rewriter.replaceOpWithNewOp<vector::ContractionOp>(
        op, lhs, rhs, res,
        rewriter.getAffineMapArrayAttr(infer({{m, k}, {k, n}, {m, n}})),
        op.getIteratorTypes());
    return success();
  }
};

// Merge transpose op into the transfer read op. Transpose are not supported on
// MMA types but MMA load can transpose the matrix when loading.
struct CombineTransferReadOpTranspose final
    : public OpRewritePattern<vector::TransposeOp> {
  using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(vector::TransposeOp op,
                                PatternRewriter &rewriter) const override {
    auto transferReadOp =
        op.getVector().getDefiningOp<vector::TransferReadOp>();
    if (!transferReadOp)
      return failure();

    // TODO: support 0-d corner case.
    if (transferReadOp.getTransferRank() == 0)
      return failure();

    if (transferReadOp.getMask() || transferReadOp.hasOutOfBoundsDim())
      return failure();
    SmallVector<int64_t, 2> perm;
    op.getTransp(perm);
    SmallVector<unsigned, 2> permU;
    for (int64_t o : perm)
      permU.push_back(unsigned(o));
    AffineMap permutationMap =
        AffineMap::getPermutationMap(permU, op.getContext());
    AffineMap newMap =
        permutationMap.compose(transferReadOp.getPermutationMap());
    rewriter.replaceOpWithNewOp<vector::TransferReadOp>(
        op, op.getType(), transferReadOp.getSource(),
        transferReadOp.getIndices(), AffineMapAttr::get(newMap),
        transferReadOp.getPadding(), transferReadOp.getMask(),
        transferReadOp.getInBoundsAttr());
    return success();
  }
};

} // namespace

// MMA types have different layout based on how they are used in matmul ops.
// Figure the right layout to use by looking at op uses.
// TODO: Change the GPU dialect to abstract the layout at the this level and
// only care about it during lowering to NVVM.
template <typename OpTy>
static const char *inferFragType(OpTy op) {
  for (Operation *users : op->getUsers()) {
    auto contract = dyn_cast<vector::ContractionOp>(users);
    if (!contract)
      continue;
    if (contract.getLhs() == op.getResult())
      return "AOp";
    if (contract.getRhs() == op.getResult())
      return "BOp";
  }
  return "COp";
}

static void convertTransferReadOp(vector::TransferReadOp op,
                                  llvm::DenseMap<Value, Value> &valueMapping) {
  assert(op.getTransferRank() > 0 && "unexpected 0-d transfer");
  assert(transferReadSupportsMMAMatrixType(op, /*useNvGpu=*/false));
  Optional<int64_t> stride =
      getMemrefConstantHorizontalStride(op.getShapedType());
  AffineMap map = op.getPermutationMap();
  // Handle broadcast by setting the stride to 0.
  if (map.getResult(0).isa<AffineConstantExpr>()) {
    assert(map.getResult(0).cast<AffineConstantExpr>().getValue() == 0);
    stride = 0;
  }
  assert(stride);
  const char *fragType = inferFragType(op);
  gpu::MMAMatrixType type =
      gpu::MMAMatrixType::get(op.getVectorType().getShape(),
                              op.getVectorType().getElementType(), fragType);
  OpBuilder b(op);
  Value load = b.create<gpu::SubgroupMmaLoadMatrixOp>(
      op.getLoc(), type, op.getSource(), op.getIndices(),
      b.getIndexAttr(*stride));
  valueMapping[op.getResult()] = load;
}

static void convertTransferWriteOp(vector::TransferWriteOp op,
                                   llvm::DenseMap<Value, Value> &valueMapping) {
  assert(transferWriteSupportsMMAMatrixType(op));
  Optional<int64_t> stride =
      getMemrefConstantHorizontalStride(op.getShapedType());
  assert(stride);
  OpBuilder b(op);
  Value matrix = valueMapping.find(op.getVector())->second;
  b.create<gpu::SubgroupMmaStoreMatrixOp>(op.getLoc(), matrix, op.getSource(),
                                          op.getIndices(),
                                          b.getIndexAttr(*stride));
  op.erase();
}

/// Returns the vector type which represents a matrix fragment.
static VectorType
getMmaSyncVectorOperandType(const nvgpu::FragmentElementInfo &regInfo) {
  SmallVector<int64_t> shape{regInfo.numRegistersPerFragment,
                             regInfo.elementsPerRegister};
  Type elType = regInfo.registerLLVMType;
  if (auto vecType = elType.dyn_cast<VectorType>())
    elType = vecType.getElementType();
  return VectorType::get(shape, elType);
}

/// Convert a 2D splat ConstantOp to a SubgroupMmaConstantMatrix op.
static LogicalResult
convertConstantOpMmaSync(arith::ConstantOp op,
                         llvm::DenseMap<Value, Value> &valueMapping) {
  OpBuilder b(op);
  FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
      nvgpu::getWarpMatrixInfo(op);
  if (failed(warpMatrixInfo))
    return failure();

  FailureOr<nvgpu::FragmentElementInfo> regInfo =
      nvgpu::getMmaSyncRegisterType(*warpMatrixInfo);
  if (failed(regInfo))
    return failure();

  VectorType vectorType = getMmaSyncVectorOperandType(*regInfo);
  auto dense = op.getValue().dyn_cast<SplatElementsAttr>();
  if (!dense)
    return failure();
  Value result = b.create<arith::ConstantOp>(
      op.getLoc(), vectorType,
      DenseElementsAttr::get(vectorType, dense.getSplatValue<Attribute>()));
  valueMapping[op.getResult()] = result;
  return success();
}

static LogicalResult
creatLdMatrixCompatibleLoads(vector::TransferReadOp op, OpBuilder &builder,
                             llvm::DenseMap<Value, Value> &valueMapping) {
  Location loc = op->getLoc();

  FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
      nvgpu::getWarpMatrixInfo(op);
  if (failed(warpMatrixInfo))
    return failure();

  FailureOr<nvgpu::FragmentElementInfo> regInfo =
      nvgpu::getMmaSyncRegisterType(*warpMatrixInfo);
  if (failed(regInfo))
    return failure();

  FailureOr<nvgpu::LdMatrixParams> params = nvgpu::getLdMatrixParams(
      *warpMatrixInfo,
      /*transpose=*/!op.getPermutationMap().isMinorIdentity());
  if (failed(params)) {
    return op->emitError()
           << "failed to convert vector.transfer_read to ldmatrix; this op "
              "likely "
              "should not be converted to a nvgpu.ldmatrix call.";
  }

  // Adjust the load offset.
  auto laneId = builder.create<gpu::LaneIdOp>(loc);
  FailureOr<AffineMap> offsets =
      nvgpu::getLaneIdToLdMatrixMatrixCoord(loc, builder, *params);
  if (failed(offsets))
    return failure();

  VectorType vectorType = getMmaSyncVectorOperandType(*regInfo);

  SmallVector<Value, 4> indices;
  getXferIndices<vector::TransferReadOp>(builder, op, *offsets, {laneId},
                                         indices);
  nvgpu::LdMatrixOp newOp = builder.create<nvgpu::LdMatrixOp>(
      loc, vectorType, op.getSource(), indices,
      !op.getPermutationMap().isMinorIdentity(), params->numTiles);
  valueMapping[op] = newOp->getResult(0);
  return success();
}

static LogicalResult
createNonLdMatrixLoads(vector::TransferReadOp op, OpBuilder &builder,
                       llvm::DenseMap<Value, Value> &valueMapping) {
  Location loc = op.getLoc();
  FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
      nvgpu::getWarpMatrixInfo(op);
  if (failed(warpMatrixInfo))
    return failure();
  FailureOr<nvgpu::FragmentElementInfo> regInfo =
      nvgpu::getMmaSyncRegisterType(*warpMatrixInfo);
  if (failed(regInfo)) {
    op->emitError() << "Failed to deduce register fragment type during "
                       "conversion to distributed non-ldmatrix compatible load";
    return failure();
  }

  Value laneId = builder.create<gpu::LaneIdOp>(loc);
  SmallVector<Value, 4> elements;

  // This is the individual element type.
  Type loadedElType = regInfo->registerLLVMType;
  VectorType vectorType = getMmaSyncVectorOperandType(*regInfo);

  Value fill = builder.create<arith::ConstantOp>(
      op.getLoc(), vectorType.getElementType(),
      builder.getZeroAttr(vectorType.getElementType()));
  Value result = builder.create<vector::SplatOp>(op.getLoc(), fill, vectorType);

  bool isTransposeLoad = !op.getPermutationMap().isMinorIdentity();

  // If we are not transposing, then we can use vectorized loads. Otherwise, we
  // must load each element individually.
  if (!isTransposeLoad) {
    if (!loadedElType.isa<VectorType>()) {
      loadedElType = VectorType::get({1}, loadedElType);
    }

    for (int i = 0; i < vectorType.getShape()[0]; i++) {
      FailureOr<AffineMap> coords = nvgpu::getLaneIdAndValueIdToOperandCoord(
          op.getLoc(), builder, *warpMatrixInfo);
      if (failed(coords))
        return failure();
      Value logicalValueId = builder.create<arith::ConstantOp>(
          loc, builder.getIndexType(),
          builder.getIndexAttr(i * regInfo->elementsPerRegister));
      SmallVector<Value, 4> newIndices;
      getXferIndices<vector::TransferReadOp>(
          builder, op, *coords, {laneId, logicalValueId}, newIndices);

      Value el = builder.create<vector::LoadOp>(loc, loadedElType,
                                                op.getSource(), newIndices);
      result = builder.create<vector::InsertOp>(loc, el, result,
                                                builder.getI64ArrayAttr(i));
    }
  } else {
    if (auto vecType = loadedElType.dyn_cast<VectorType>()) {
      loadedElType = vecType.getElementType();
    }
    for (int i = 0; i < vectorType.getShape()[0]; i++) {
      for (unsigned innerIdx = 0; innerIdx < vectorType.getShape()[1];
           innerIdx++) {

        Value logicalValueId = builder.create<arith::ConstantOp>(
            loc, builder.getIndexType(),
            builder.getIndexAttr(i * regInfo->elementsPerRegister + innerIdx));
        FailureOr<AffineMap> coords = nvgpu::getLaneIdAndValueIdToOperandCoord(
            op.getLoc(), builder, *warpMatrixInfo);
        if (failed(coords))
          return failure();

        SmallVector<Value, 4> newIndices;
        getXferIndices<vector::TransferReadOp>(
            builder, op, *coords, {laneId, logicalValueId}, newIndices);
        Value el = builder.create<memref::LoadOp>(op.getLoc(), loadedElType,
                                                  op.getSource(), newIndices);
        result = builder.create<vector::InsertOp>(
            op.getLoc(), el, result, builder.getI64ArrayAttr({i, innerIdx}));
      }
    }
  }

  valueMapping[op.getResult()] = result;
  return success();
}

/// Converts a `vector.transfer_read` operation directly to either a
/// `vector.load` or a `nvgpu.ldmatrix` operation. This function should only be
/// used when converting to `nvgpu.mma.sync` operations.
static LogicalResult
convertTransferReadToLoads(vector::TransferReadOp op,
                           llvm::DenseMap<Value, Value> &valueMapping) {
  OpBuilder b(op);

  FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
      nvgpu::getWarpMatrixInfo(op);
  if (failed(warpMatrixInfo))
    return failure();

  bool isLdMatrixCompatible =
      op.getSource().getType().cast<MemRefType>().getMemorySpaceAsInt() == 3 &&
      nvgpu::inferTileWidthInBits(*warpMatrixInfo) == 128;

  VectorType vecTy = op.getVectorType();
  int64_t bitWidth = vecTy.getElementType().getIntOrFloatBitWidth();

  // When we are transposing the B operand, ldmatrix will only work if we have
  // at least 8 rows to read and  the width to read for the transpose is 128
  // bits.
  if (!op.getPermutationMap().isMinorIdentity() &&
      (bitWidth != 16 || vecTy.getDimSize(1) < 8 ||
       vecTy.getDimSize(0) * bitWidth < 128))
    isLdMatrixCompatible = false;

  if (!isLdMatrixCompatible)
    return createNonLdMatrixLoads(op, b, valueMapping);

  return creatLdMatrixCompatibleLoads(op, b, valueMapping);
}

static LogicalResult
convertTransferWriteToStores(vector::TransferWriteOp op,
                             llvm::DenseMap<Value, Value> &valueMapping) {
  OpBuilder b(op);
  Location loc = op->getLoc();
  Value matrix = valueMapping.find(op.getVector())->second;

  FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
      nvgpu::getWarpMatrixInfo(op);
  if (failed(warpMatrixInfo))
    return failure();
  FailureOr<nvgpu::FragmentElementInfo> regInfo =
      nvgpu::getMmaSyncRegisterType(*warpMatrixInfo);
  if (failed(regInfo))
    return failure();

  VectorType vectorType = getMmaSyncVectorOperandType(*regInfo);
  Value laneId = b.create<gpu::LaneIdOp>(loc);

  for (unsigned i = 0; i < vectorType.getShape()[0]; i++) {
    Value logicalValueId = b.create<arith::ConstantOp>(
        loc, b.getIndexType(),
        b.getIndexAttr(i * regInfo->elementsPerRegister));
    FailureOr<AffineMap> coords = nvgpu::getLaneIdAndValueIdToOperandCoord(
        op.getLoc(), b, *warpMatrixInfo);
    if (failed(coords))
      return failure();

    Value el = b.create<vector::ExtractOp>(loc, matrix, ArrayRef<int64_t>{i});
    SmallVector<Value, 4> newIndices;
    getXferIndices<vector::TransferWriteOp>(
        b, op, *coords, {laneId, logicalValueId}, newIndices);
    b.create<vector::StoreOp>(loc, el, op.getSource(), newIndices);
  }
  op->erase();
  return success();
}

static void convertContractOp(vector::ContractionOp op,
                              llvm::DenseMap<Value, Value> &valueMapping) {
  OpBuilder b(op);
  Value opA = valueMapping.find(op.getLhs())->second;
  Value opB = valueMapping.find(op.getRhs())->second;
  Value opC = valueMapping.find(op.getAcc())->second;
  Value matmul = b.create<gpu::SubgroupMmaComputeOp>(op.getLoc(), opC.getType(),
                                                     opA, opB, opC);
  valueMapping[op.getResult()] = matmul;
}

static LogicalResult
convertContractOpToMmaSync(vector::ContractionOp op,
                           llvm::DenseMap<Value, Value> &valueMapping) {
  OpBuilder b(op);
  Value opA = valueMapping.find(op.getLhs())->second;
  Value opB = valueMapping.find(op.getRhs())->second;
  Value opC = valueMapping.find(op.getAcc())->second;
  int64_t m = op.getLhs().getType().cast<VectorType>().getShape()[0];
  int64_t n = op.getRhs().getType().cast<VectorType>().getShape()[0];
  int64_t k = op.getLhs().getType().cast<VectorType>().getShape()[1];
  Value matmul = b.create<nvgpu::MmaSyncOp>(
      op.getLoc(), opC.getType(), opA, opB, opC, b.getI64ArrayAttr({m, n, k}));
  valueMapping[op.getResult()] = matmul;
  return success();
}

/// Convert a 2D splat ConstantOp to a SubgroupMmaConstantMatrix op.
static void convertConstantOp(arith::ConstantOp op,
                              llvm::DenseMap<Value, Value> &valueMapping) {
  assert(constantSupportsMMAMatrixType(op));
  OpBuilder b(op);
  Attribute splat =
      op.getValue().cast<SplatElementsAttr>().getSplatValue<Attribute>();
  auto scalarConstant =
      b.create<arith::ConstantOp>(op.getLoc(), splat.getType(), splat);
  const char *fragType = inferFragType(op);
  auto vecType = op.getType().cast<VectorType>();
  gpu::MMAMatrixType type = gpu::MMAMatrixType::get(
      vecType.getShape(), vecType.getElementType(), llvm::StringRef(fragType));
  auto matrix = b.create<gpu::SubgroupMmaConstantMatrixOp>(op.getLoc(), type,
                                                           scalarConstant);
  valueMapping[op.getResult()] = matrix;
}

/// Convert a vector.broadcast from scalar to a SubgroupMmaConstantMatrix op.
static void convertBroadcastOp(vector::BroadcastOp op,
                               llvm::DenseMap<Value, Value> &valueMapping) {
  assert(broadcastSupportsMMAMatrixType(op));
  OpBuilder b(op);
  const char *fragType = inferFragType(op);
  auto vecType = op.getVectorType();
  gpu::MMAMatrixType type = gpu::MMAMatrixType::get(
      vecType.getShape(), vecType.getElementType(), llvm::StringRef(fragType));
  auto matrix = b.create<gpu::SubgroupMmaConstantMatrixOp>(op.getLoc(), type,
                                                           op.getSource());
  valueMapping[op.getResult()] = matrix;
}

// Replace ForOp with a new ForOp with extra operands. The YieldOp is not
// updated and needs to be updated separatly for the loop to be correct.
static scf::ForOp replaceForOpWithNewSignature(OpBuilder &b, scf::ForOp loop,
                                               ValueRange newIterOperands) {
  // Create a new loop before the existing one, with the extra operands.
  OpBuilder::InsertionGuard g(b);
  b.setInsertionPoint(loop);
  auto operands = llvm::to_vector<4>(loop.getIterOperands());
  operands.append(newIterOperands.begin(), newIterOperands.end());
  scf::ForOp newLoop =
      b.create<scf::ForOp>(loop.getLoc(), loop.getLowerBound(),
                           loop.getUpperBound(), loop.getStep(), operands);
  newLoop.getBody()->erase();
  newLoop.getLoopBody().getBlocks().splice(
      newLoop.getLoopBody().getBlocks().begin(),
      loop.getLoopBody().getBlocks());
  for (Value operand : newIterOperands)
    newLoop.getBody()->addArgument(operand.getType(), operand.getLoc());

  for (auto it : llvm::zip(loop.getResults(), newLoop.getResults().take_front(
                                                  loop.getNumResults())))
    std::get<0>(it).replaceAllUsesWith(std::get<1>(it));
  loop.erase();
  return newLoop;
}

static void convertForOp(scf::ForOp op,
                         llvm::DenseMap<Value, Value> &valueMapping) {
  SmallVector<Value> newOperands;
  SmallVector<std::pair<size_t, size_t>> argMapping;
  for (const auto &operand : llvm::enumerate(op.getIterOperands())) {
    auto it = valueMapping.find(operand.value());
    if (it == valueMapping.end())
      continue;
    argMapping.push_back(std::make_pair(
        operand.index(), op.getNumIterOperands() + newOperands.size()));
    newOperands.push_back(it->second);
  }
  OpBuilder b(op);
  scf::ForOp newForOp = replaceForOpWithNewSignature(b, op, newOperands);
  Block &loopBody = *newForOp.getBody();
  for (auto mapping : argMapping) {
    valueMapping[newForOp.getResult(mapping.first)] =
        newForOp.getResult(mapping.second);
    valueMapping[loopBody.getArgument(mapping.first +
                                      newForOp.getNumInductionVars())] =
        loopBody.getArgument(mapping.second + newForOp.getNumInductionVars());
  }
}

static void convertYieldOp(scf::YieldOp op,
                           llvm::DenseMap<Value, Value> &valueMapping) {
  OpBuilder b(op);
  auto loop = cast<scf::ForOp>(op->getParentOp());
  auto yieldOperands = llvm::to_vector<4>(op.getOperands());
  for (const auto &operand : llvm::enumerate(op.getOperands())) {
    auto it = valueMapping.find(operand.value());
    if (it == valueMapping.end())
      continue;
    // Replace the yield of old value with the for op argument to make it easier
    // to remove the dead code.
    yieldOperands[operand.index()] = loop.getIterOperands()[operand.index()];
    yieldOperands.push_back(it->second);
  }
  b.create<scf::YieldOp>(op.getLoc(), yieldOperands);
  op.erase();
}

/// Convert an elementwise op to the equivalent elementwise op on MMA matrix.
static void convertElementwiseOp(Operation *op, gpu::MMAElementwiseOp opType,
                                 llvm::DenseMap<Value, Value> &valueMapping) {
  OpBuilder b(op);
  SmallVector<Value> matrixOperands;
  for (Value operand : op->getOperands())
    matrixOperands.push_back(valueMapping.find(operand)->second);
  Value newOp = b.create<gpu::SubgroupMmaElementwiseOp>(
      op->getLoc(), matrixOperands[0].getType(), matrixOperands, opType);
  valueMapping[op->getResult(0)] = newOp;
}

void mlir::populatePrepareVectorToMMAPatterns(RewritePatternSet &patterns,
                                              bool useNvGpu) {
  if (!useNvGpu) {
    patterns.add<PrepareContractToGPUMMA, CombineTransferReadOpTranspose>(
        patterns.getContext());
    return;
  }
  patterns
      .add<nvgpu::PrepareContractToGPUMMASync, CombineTransferReadOpTranspose>(
          patterns.getContext());
}

void mlir::convertVectorToMMAOps(Operation *rootOp) {
  SetVector<Operation *> ops = getOpToConvert(rootOp, /*useNvGpu=*/false);
  llvm::DenseMap<Value, Value> valueMapping;
  for (Operation *op : ops) {
    if (auto transferRead = dyn_cast<vector::TransferReadOp>(op)) {
      convertTransferReadOp(transferRead, valueMapping);
    } else if (auto transferWrite = dyn_cast<vector::TransferWriteOp>(op)) {
      convertTransferWriteOp(transferWrite, valueMapping);
    } else if (auto contractOp = dyn_cast<vector::ContractionOp>(op)) {
      convertContractOp(contractOp, valueMapping);
    } else if (auto constantOp = dyn_cast<arith::ConstantOp>(op)) {
      convertConstantOp(constantOp, valueMapping);
    } else if (auto broadcastOp = dyn_cast<vector::BroadcastOp>(op)) {
      convertBroadcastOp(broadcastOp, valueMapping);
    } else if (auto forOp = dyn_cast<scf::ForOp>(op)) {
      convertForOp(forOp, valueMapping);
    } else if (auto yiledOp = dyn_cast<scf::YieldOp>(op)) {
      convertYieldOp(yiledOp, valueMapping);
    } else if (auto elementwiseType = convertElementwiseOpToMMA(op)) {
      convertElementwiseOp(op, *elementwiseType, valueMapping);
    }
  }
}

LogicalResult mlir::convertVectorToNVVMCompatibleMMASync(Operation *rootOp) {
  SetVector<Operation *> ops = getOpToConvert(rootOp, /*useNvGpu=*/true);
  llvm::DenseMap<Value, Value> valueMapping;
  for (Operation *op : ops) {
    if (llvm::TypeSwitch<Operation *, LogicalResult>(op)
            .Case([&](vector::TransferReadOp transferReadOp) {
              return convertTransferReadToLoads(transferReadOp, valueMapping);
            })
            .Case([&](vector::TransferWriteOp transferWriteOp) {
              return convertTransferWriteToStores(transferWriteOp,
                                                  valueMapping);
            })
            .Case([&](vector::ContractionOp contractionOp) {
              return convertContractOpToMmaSync(contractionOp, valueMapping);
            })
            .Case([&](scf::ForOp forOp) {
              convertForOp(forOp, valueMapping);
              return success();
            })
            .Case([&](scf::YieldOp yieldOp) {
              convertYieldOp(yieldOp, valueMapping);
              return success();
            })
            .Case([&](arith::ConstantOp constOp) {
              return convertConstantOpMmaSync(constOp, valueMapping);
            })
            .Default([&](Operation *op) {
              op->emitError() << "unhandled vector to mma type: " << *op;
              return failure();
            })
            .failed()) {
      op->emitError() << "Failed to convert op " << *op;
      return failure();
    }
  }
  return success();
}

namespace {

struct ConvertVectorToGPUPass
    : public ConvertVectorToGPUBase<ConvertVectorToGPUPass> {

  explicit ConvertVectorToGPUPass(bool useNvGpu_) {
    useNvGpu.setValue(useNvGpu_);
  }

  void runOnOperation() override {
    RewritePatternSet patterns(&getContext());
    populatePrepareVectorToMMAPatterns(patterns, useNvGpu.getValue());
    if (failed(
            applyPatternsAndFoldGreedily(getOperation(), std::move(patterns))))
      return signalPassFailure();

    if (useNvGpu.getValue()) {
      if (failed(convertVectorToNVVMCompatibleMMASync(getOperation())))
        return signalPassFailure();
    }

    (void)convertVectorToMMAOps(getOperation());
  }
};

} // namespace

std::unique_ptr<Pass> mlir::createConvertVectorToGPUPass(bool useNvGpu) {
  return std::make_unique<ConvertVectorToGPUPass>(useNvGpu);
}