File: one-shot-bufferize.mlir

package info (click to toggle)
llvm-toolchain-15 1%3A15.0.6-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,554,644 kB
  • sloc: cpp: 5,922,452; ansic: 1,012,136; asm: 674,362; python: 191,568; objc: 73,855; f90: 42,327; lisp: 31,913; pascal: 11,973; javascript: 10,144; sh: 9,421; perl: 7,447; ml: 5,527; awk: 3,523; makefile: 2,520; xml: 885; cs: 573; fortran: 567
file content (711 lines) | stat: -rw-r--r-- 29,486 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
// RUN: mlir-opt %s -allow-unregistered-dialect -one-shot-bufferize="allow-return-allocs bufferize-function-boundaries" -drop-equivalent-buffer-results -buffer-deallocation -split-input-file | FileCheck %s

// Run fuzzer with different seeds.
// RUN: mlir-opt %s -allow-unregistered-dialect -one-shot-bufferize="allow-return-allocs test-analysis-only analysis-fuzzer-seed=23 bufferize-function-boundaries" -split-input-file -o /dev/null
// RUN: mlir-opt %s -allow-unregistered-dialect -one-shot-bufferize="allow-return-allocs test-analysis-only analysis-fuzzer-seed=59 bufferize-function-boundaries" -split-input-file -o /dev/null
// RUN: mlir-opt %s -allow-unregistered-dialect -one-shot-bufferize="allow-return-allocs test-analysis-only analysis-fuzzer-seed=91 bufferize-function-boundaries" -split-input-file -o /dev/null

// Test bufferization using memref types that have no layout map.
// RUN: mlir-opt %s -allow-unregistered-dialect -one-shot-bufferize="allow-return-allocs unknown-type-conversion=identity-layout-map function-boundary-type-conversion=identity-layout-map bufferize-function-boundaries" -buffer-deallocation -split-input-file -o /dev/null

// CHECK-DAG: #[[$map_1d_dyn:.*]] = affine_map<(d0)[s0, s1] -> (d0 * s1 + s0)>

// CHECK-LABEL: func @scf_for_yield_only(
//  CHECK-SAME:   %[[A:[a-zA-Z0-9]*]]: memref<?xf32, #[[$map_1d_dyn]]>,
//  CHECK-SAME:   %[[t:[a-zA-Z0-9]*]]: memref<?xf32, #[[$map_1d_dyn]]>
//  CHECK-SAME:   ) -> memref<?xf32> {
func.func @scf_for_yield_only(
    %A : tensor<?xf32> {bufferization.writable = false},
    %B : tensor<?xf32> {bufferization.writable = true},
    %lb : index, %ub : index, %step : index)
  -> (tensor<?xf32>, tensor<?xf32>)
{
  //     CHECK:   %[[ALLOC_FOR_A:.*]] = memref.alloc
  //     CHECK:   memref.copy %[[A]], %[[ALLOC_FOR_A]]

  // The first scf.for remains but just turns into dead code.
  %r0 = scf.for %i = %lb to %ub step %step iter_args(%t = %A) -> (tensor<?xf32>) {
    scf.yield %t : tensor<?xf32>
  }

  // The second scf.for remains but just turns into dead code.
  %r1 = scf.for %i = %lb to %ub step %step iter_args(%t = %B) -> (tensor<?xf32>) {
    scf.yield %t : tensor<?xf32>
  }

  //     CHECK:   return %[[ALLOC_FOR_A]] : memref<?xf32>
  // CHECK-NOT:   dealloc
  return %r0, %r1: tensor<?xf32>, tensor<?xf32>
}

// -----

// Ensure that the function bufferizes without error. This tests pre-order
// traversal of scf.for loops during bufferization. No need to check the IR,
// just want to make sure that it does not crash.

// CHECK-LABEL: func @nested_scf_for
func.func @nested_scf_for(%A : tensor<?xf32> {bufferization.writable = true},
                          %v : vector<5xf32>) -> tensor<?xf32> {
  %c0 = arith.constant 0 : index
  %c1 = arith.constant 1 : index
  %c10 = arith.constant 10 : index
  %r1 = scf.for %i = %c0 to %c10 step %c1 iter_args(%B = %A) -> tensor<?xf32> {
    %r2 = scf.for %j = %c0 to %c10 step %c1 iter_args(%C = %B) -> tensor<?xf32> {
      %w = vector.transfer_write %v, %C[%c0] : vector<5xf32>, tensor<?xf32>
      scf.yield %w : tensor<?xf32>
    }
    scf.yield %r2 : tensor<?xf32>
  }
  return %r1 : tensor<?xf32>
}

// -----

// CHECK-DAG: #[[$map_1d_dyn:.*]] = affine_map<(d0)[s0, s1] -> (d0 * s1 + s0)>

// CHECK-LABEL: func @scf_for_with_tensor.insert_slice
//  CHECK-SAME:   %[[A:[a-zA-Z0-9]*]]: memref<?xf32, #[[$map_1d_dyn]]>
//  CHECK-SAME:   %[[B:[a-zA-Z0-9]*]]: memref<?xf32, #[[$map_1d_dyn]]>
//  CHECK-SAME:   %[[C:[a-zA-Z0-9]*]]: memref<4xf32, #[[$map_1d_dyn]]>
func.func @scf_for_with_tensor.insert_slice(
    %A : tensor<?xf32> {bufferization.writable = false},
    %B : tensor<?xf32> {bufferization.writable = true},
    %C : tensor<4xf32> {bufferization.writable = false},
    %lb : index, %ub : index, %step : index)
  -> (tensor<?xf32>, tensor<?xf32>)
{
  //     CHECK:   %[[ALLOC_FOR_A:.*]] = memref.alloc
  //     CHECK:   memref.copy %[[A]], %[[ALLOC_FOR_A]]

  //     CHECK: %[[svA:.*]] = memref.subview %[[ALLOC_FOR_A]][0] [4] [1]
  //     CHECK: %[[svB:.*]] = memref.subview %[[B]][0] [4] [1]

  //     CHECK:   scf.for {{.*}}
  // CHECK-NOT: iter_args
  %r0:2 = scf.for %i = %lb to %ub step %step iter_args(%tA = %A, %tB = %B)
      -> (tensor<?xf32>, tensor<?xf32>)
  {
    // %ttA bufferizes to direct copy of %BUFFER_CAST_C into %svA
    //     CHECK: memref.copy %[[C]], %[[svA]]
    %ttA = tensor.insert_slice %C into %tA[0][4][1] : tensor<4xf32> into tensor<?xf32>

    // %ttB bufferizes to direct copy of %BUFFER_CAST_C into %BUFFER_CAST_B
    //     CHECK:   memref.copy %[[C]], %[[svB]]
    %ttB = tensor.insert_slice %C into %tB[0][4][1] : tensor<4xf32> into tensor<?xf32>

    // CHECK-NOT:   scf.yield
    scf.yield %ttA, %ttB : tensor<?xf32>, tensor<?xf32>
  }

  //     CHECK:  return %[[ALLOC_FOR_A]] : memref<?xf32>
  return %r0#0, %r0#1: tensor<?xf32>, tensor<?xf32>
}

// -----

// CHECK-LABEL: func @execute_region_with_conflict(
//  CHECK-SAME:     %[[m1:.*]]: memref<?xf32
func.func @execute_region_with_conflict(
    %t1 : tensor<?xf32> {bufferization.writable = "true"})
  -> (f32, tensor<?xf32>, f32)
{
  %f1 = arith.constant 0.0 : f32
  %idx = arith.constant 7 : index

  // scf.execute_region is canonicalized away after bufferization. So just the
  // memref.store is left over.

  // CHECK: %[[alloc:.*]] = memref.alloc
  // CHECK: memref.copy %[[m1]], %[[alloc]]
  // CHECK: memref.store %{{.*}}, %[[alloc]][%{{.*}}]
  %0, %1, %2 = scf.execute_region -> (f32, tensor<?xf32>, f32) {
    %t2 = tensor.insert %f1 into %t1[%idx] : tensor<?xf32>
    scf.yield %f1, %t2, %f1 : f32, tensor<?xf32>, f32
  }

  // CHECK: %[[load:.*]] = memref.load %[[m1]]
  %3 = tensor.extract %t1[%idx] : tensor<?xf32>

  // CHECK: return %{{.*}}, %[[alloc]], %[[load]] : f32, memref<?xf32>, f32
  return %0, %1, %3 : f32, tensor<?xf32>, f32
}

// -----

// CHECK-LABEL: func @scf_if_inplace(
//  CHECK-SAME:     %[[cond:.*]]: i1, %[[t1:.*]]: memref<?xf32{{.*}}>, %[[v:.*]]: vector
func.func @scf_if_inplace(%cond: i1,
                          %t1: tensor<?xf32> {bufferization.writable = true},
                          %v: vector<5xf32>, %idx: index) -> tensor<?xf32> {

  //      CHECK: scf.if %[[cond]] {
  // CHECK-NEXT: } else {
  // CHECK-NEXT:   vector.transfer_write %[[v]], %[[t1]]
  // CHECK-NEXT: }
  // CHECK-NEXT: return
  %r = scf.if %cond -> (tensor<?xf32>) {
    scf.yield %t1 : tensor<?xf32>
  } else {
    %t2 = vector.transfer_write %v, %t1[%idx] : vector<5xf32>, tensor<?xf32>
    scf.yield %t2 : tensor<?xf32>
  }
  return %r : tensor<?xf32>
}

// -----

// CHECK-LABEL: func @scf_if_inside_scf_for
//   CHECK-DAG:   %[[c0:.*]] = arith.constant 0 : index
//   CHECK-DAG:   %[[c1:.*]] = arith.constant 1 : index
//   CHECK-DAG:   %[[c10:.*]] = arith.constant 10 : index
//       CHECK:   scf.for %{{.*}} = %[[c0]] to %[[c10]] step %[[c1]] {
//       CHECK:     scf.if %{{.*}} {
//       CHECK:     } else {
//       CHECK:       vector.transfer_write
//       CHECK:     }
//       CHECK:   }
func.func @scf_if_inside_scf_for(
    %t1: tensor<?xf32> {bufferization.writable = true},
    %v: vector<5xf32>, %idx: index,
    %cond: i1)
  -> tensor<?xf32>
{
  %c0 = arith.constant 0 : index
  %c1 = arith.constant 1 : index
  %c10 = arith.constant 10 : index
  %r = scf.for %iv = %c0 to %c10 step %c1 iter_args(%bb = %t1) -> (tensor<?xf32>) {
    %r2 = scf.if %cond -> (tensor<?xf32>) {
      scf.yield %bb : tensor<?xf32>
    } else {
      %t2 = vector.transfer_write %v, %bb[%idx] : vector<5xf32>, tensor<?xf32>
      scf.yield %t2 : tensor<?xf32>
    }
    scf.yield %r2 : tensor<?xf32>
  }
  return %r : tensor<?xf32>
}

// -----

// CHECK-LABEL: func @scf_if_non_equiv_yields(
//  CHECK-SAME:     %[[cond:.*]]: i1, %[[A:.*]]: memref<{{.*}}>, %[[B:.*]]: memref<{{.*}}>) -> memref<{{.*}}>
func.func @scf_if_non_equiv_yields(
    %b : i1,
    %A : tensor<4xf32> {bufferization.writable = false},
    %B : tensor<4xf32> {bufferization.writable = false})
  -> tensor<4xf32>
{
  // CHECK: %[[r:.*]] = arith.select %[[cond]], %[[A]], %[[B]]
  %r = scf.if %b -> (tensor<4xf32>) {
    scf.yield %A : tensor<4xf32>
  } else {
    scf.yield %B : tensor<4xf32>
  }
  // CHECK: return %[[r]]
  return %r: tensor<4xf32>
}

// -----

// Note: This bufferization is inefficient, but it bufferizes correctly.

// CHECK-LABEL: func @scf_execute_region_yield_non_equivalent(
//       CHECK:   %[[alloc:.*]] = memref.alloc(%{{.*}})
//       CHECK:   %[[r:.*]] = memref.load %[[alloc]][%{{.*}}]
//       CHECK:   memref.dealloc %[[alloc]]
//       CHECK:   return %[[r]]
func.func @scf_execute_region_yield_non_equivalent(%i: index, %j: index) -> f32 {
  %r = scf.execute_region -> (tensor<?xf32>) {
    %t2 = bufferization.alloc_tensor(%i) : tensor<?xf32>
    scf.yield %t2 : tensor<?xf32>
  }
  %f = tensor.extract %r[%j] : tensor<?xf32>
  return %f : f32
}

// -----

// Note: This bufferizes to inefficient code, but bufferization should not see
// such IR in the first place. The iter_arg would canonicalize away. This test
// case is just to ensure that the bufferization generates correct code.

// CHECK-LABEL: func @scf_for_yield_non_equivalent(
//  CHECK-SAME:     %[[t:.*]]: memref<?xf32
//       CHECK:   %[[alloc:.*]] = memref.alloc(%{{.*}})
//       CHECK:   %[[cloned:.*]] = bufferization.clone %[[alloc]]
//       CHECK:   memref.dealloc %[[alloc]]
//       CHECK:   %[[for:.*]] = scf.for {{.*}} iter_args(%[[iter:.*]] = %[[cloned]])
//   CHECK-DAG:     memref.dealloc %[[iter]]
//   CHECK-DAG:     %[[alloc2:.*]] = memref.alloc(%{{.*}})
//       CHECK:     memref.copy %[[t]], %[[alloc2]]
//       CHECK:     %[[cloned2:.*]] = bufferization.clone %[[alloc2]]
//       CHECK:     memref.dealloc %[[alloc2]]
//       CHECK:     scf.yield %[[cloned2]]
//       CHECK:   return %[[for]]
func.func @scf_for_yield_non_equivalent(
    %t: tensor<?xf32>, %lb : index, %ub : index, %step : index) -> tensor<?xf32> {
  %r = scf.for %i = %lb to %ub step %step iter_args(%a = %t) -> tensor<?xf32> {
    scf.yield %t : tensor<?xf32>
  }

  return %r : tensor<?xf32>
}

// -----

// Note: This bufferizes to inefficient code, but bufferization should not see
// such IR in the first place. The iter_arg would canonicalize away. This test
// case is just to ensure that the bufferization generates correct code.

// CHECK-LABEL: func @scf_for_yield_allocation(
//  CHECK-SAME:     %[[t:.*]]: memref<?xf32
//       CHECK:   %[[cloned:.*]] = bufferization.clone %[[t]]
//       CHECK:   %[[for:.*]] = scf.for {{.*}} iter_args(%[[iter:.*]] = %[[cloned]])
// This alloc is for the bufferization.alloc_tensor.
//   CHECK-DAG:     %[[alloc2:.*]] = memref.alloc(%{{.*}})
//   CHECK-DAG:     memref.dealloc %[[iter]]
// This alloc is for the scf.yield.
//       CHECK:     %[[alloc3:.*]] = memref.alloc(%{{.*}})
//       CHECK:     memref.copy %[[alloc2]], %[[alloc3]]
//       CHECK:     memref.dealloc %[[alloc2]]
//       CHECK:     %[[casted3:.*]] = memref.cast %[[alloc3]]
//       CHECK:     %[[cloned3:.*]] = bufferization.clone %[[casted3]]
//       CHECK:     memref.dealloc %[[alloc3]]
//       CHECK:     scf.yield %[[cloned3]]
//       CHECK:   return %[[for]]
func.func @scf_for_yield_allocation(%t: tensor<?xf32>, %lb : index, %ub : index,
                               %step : index) -> tensor<?xf32> {
  %r = scf.for %i = %lb to %ub step %step iter_args(%a = %t) -> tensor<?xf32> {
    %t2 = bufferization.alloc_tensor(%i) : tensor<?xf32>
    scf.yield %t2 : tensor<?xf32>
  }

  return %r : tensor<?xf32>
}

// -----

// TODO: The scf.yield could bufferize to 1 alloc and 2 copies (instead of
// 2 allocs and 2 copies).

// CHECK-LABEL: func @scf_for_swapping_yields(
//  CHECK-SAME:     %[[A:.*]]: memref<?xf32, #{{.*}}>, %[[B:.*]]: memref<?xf32, #{{.*}}>
func.func @scf_for_swapping_yields(
    %A : tensor<?xf32>, %B : tensor<?xf32> {bufferization.writable = true},
    %C : tensor<4xf32>, %lb : index, %ub : index, %step : index)
  -> (f32, f32)
{
//   CHECK-DAG:   %[[clone1:.*]] = bufferization.clone %[[A]]
//   CHECK-DAG:   %[[clone2:.*]] = bufferization.clone %[[B]]
//       CHECK:   %[[for:.*]]:2 = scf.for {{.*}} iter_args(%[[iter1:.*]] = %[[clone1]], %[[iter2:.*]] = %[[clone2]])
  %r0:2 = scf.for %i = %lb to %ub step %step iter_args(%tA = %A, %tB = %B)
      -> (tensor<?xf32>, tensor<?xf32>)
  {
//       CHECK:     %[[sv1:.*]] = memref.subview %[[iter1]]
//       CHECK:     memref.copy %{{.*}}, %[[sv1]]
    %ttA = tensor.insert_slice %C into %tA[0][4][1] : tensor<4xf32> into tensor<?xf32>
//       CHECK:     %[[sv2:.*]] = memref.subview %[[iter2]]
//       CHECK:     memref.copy %{{.*}}, %[[sv2]]
    %ttB = tensor.insert_slice %C into %tB[0][4][1] : tensor<4xf32> into tensor<?xf32>

//       CHECK:     %[[alloc2:.*]] = memref.alloc(%{{.*}})
//       CHECK:     memref.copy %[[iter2]], %[[alloc2]]
//       CHECK:     memref.dealloc %[[iter2]]
//       CHECK:     %[[alloc1:.*]] = memref.alloc(%{{.*}})
//       CHECK:     memref.copy %[[iter1]], %[[alloc1]]
//       CHECK:     memref.dealloc %[[iter1]]
//       CHECK:     %[[casted2:.*]] = memref.cast %[[alloc2]]
//       CHECK:     %[[casted1:.*]] = memref.cast %[[alloc1]]
//       CHECK:     %[[cloned1:.*]] = bufferization.clone %[[casted1]]
//       CHECK:     memref.dealloc %[[alloc1]]
//       CHECK:     %[[cloned2:.*]] = bufferization.clone %[[casted2]]
//       CHECK:     memref.dealloc %[[alloc2]]
//       CHECK:     scf.yield %[[cloned2]], %[[cloned1]]
    // Yield tensors in different order.
    scf.yield %ttB, %ttA : tensor<?xf32>, tensor<?xf32>
  }

//       CHECK:     %[[r0:.*]] = memref.load %[[for]]#0
//       CHECK:     memref.dealloc %[[for]]#0
//       CHECK:     %[[r1:.*]] = memref.load %[[for]]#1
//       CHECK:     memref.dealloc %[[for]]#1
  %f0 = tensor.extract %r0#0[%step] : tensor<?xf32>
  %f1 = tensor.extract %r0#1[%step] : tensor<?xf32>
//       CHECK:     return %[[r0]], %[[r1]]
  return %f0, %f1: f32, f32
}

// -----

// CHECK-LABEL: func @scf_while(
//  CHECK-SAME:     %[[arg0:.*]]: memref<?xi1, #{{.*}}>
func.func @scf_while(%arg0: tensor<?xi1>, %idx: index) -> tensor<?xi1> {
  // CHECK: scf.while : () -> () {
  %res = scf.while (%arg1 = %arg0) : (tensor<?xi1>) -> tensor<?xi1> {
    // CHECK: %[[condition:.*]] = memref.load %[[arg0]]
    // CHECK: scf.condition(%[[condition]])
    %condition = tensor.extract %arg1[%idx] : tensor<?xi1>
    scf.condition(%condition) %arg1 : tensor<?xi1>
  } do {
  ^bb0(%arg2: tensor<?xi1>):
    // CHECK: } do {
    // CHECK: memref.store %{{.*}}, %[[arg0]]
    // CHECK: scf.yield
    // CHECK: }
    %pos = "dummy.some_op"() : () -> (index)
    %val = "dummy.another_op"() : () -> (i1)
    %1 = tensor.insert %val into %arg2[%pos] : tensor<?xi1>
    scf.yield %1 : tensor<?xi1>
  }

  // CHECK: return
  return %res : tensor<?xi1>
}

// -----

// The loop condition yields non-equivalent buffers.

// CHECK-LABEL: func @scf_while_non_equiv_condition(
//  CHECK-SAME:     %[[arg0:.*]]: memref<5xi1, #{{.*}}>, %[[arg1:.*]]: memref<5xi1, #{{.*}}>
func.func @scf_while_non_equiv_condition(%arg0: tensor<5xi1>,
                                         %arg1: tensor<5xi1>,
                                         %idx: index)
  -> (tensor<5xi1>, tensor<5xi1>)
{
  // CHECK: %[[clone1:.*]] = bufferization.clone %[[arg1]]
  // CHECK: %[[clone0:.*]] = bufferization.clone %[[arg0]]
  // CHECK: %[[loop:.*]]:2 = scf.while (%[[w0:.*]] = %[[clone0]], %[[w1:.*]] = %[[clone1]]) {{.*}} {
  %r0, %r1 = scf.while (%w0 = %arg0, %w1 = %arg1)
      : (tensor<5xi1>, tensor<5xi1>) -> (tensor<5xi1>, tensor<5xi1>) {
    // CHECK: %[[condition:.*]] = memref.load %[[w0]]
    // CHECK: %[[a1:.*]] = memref.alloc() {{.*}} : memref<5xi1>
    // CHECK: memref.copy %[[w1]], %[[a1]]
    // CHECK: memref.dealloc %[[w1]]
    // CHECK: %[[a0:.*]] = memref.alloc() {{.*}} : memref<5xi1>
    // CHECK: memref.copy %[[w0]], %[[a0]]
    // CHECK: memref.dealloc %[[w0]]
    // CHECK: %[[casted1:.*]] = memref.cast %[[a1]]
    // CHECK: %[[casted0:.*]] = memref.cast %[[a0]]
    // CHECK: %[[cloned0:.*]] = bufferization.clone %[[casted0]]
    // CHECK: memref.dealloc %[[a0]]
    // CHECK: %[[cloned1:.*]] = bufferization.clone %[[casted1]]
    // CHECK: memref.dealloc %[[a1]]
    // CHECK: scf.condition(%[[condition]]) %[[cloned1]], %[[cloned0]]
    %condition = tensor.extract %w0[%idx] : tensor<5xi1>
    scf.condition(%condition) %w1, %w0 : tensor<5xi1>, tensor<5xi1>
  } do {
  ^bb0(%b0: tensor<5xi1>, %b1: tensor<5xi1>):
    // CHECK: } do {
    // CHECK: ^bb0(%[[b0:.*]]: memref<5xi1, #{{.*}}>, %[[b1:.*]]: memref<5xi1, #{{.*}}):
    // CHECK: memref.store %{{.*}}, %[[b0]]
    // CHECK: %[[cloned2:.*]] = bufferization.clone %[[b1]]
    // CHECK: memref.dealloc %[[b1]]
    // CHECK: %[[cloned3:.*]] = bufferization.clone %[[b0]]
    // CHECK: memref.dealloc %[[b0]]
    // CHECK: scf.yield %[[cloned3]], %[[cloned2]]
    // CHECK: }
    %pos = "dummy.some_op"() : () -> (index)
    %val = "dummy.another_op"() : () -> (i1)
    %1 = tensor.insert %val into %b0[%pos] : tensor<5xi1>
    scf.yield %1, %b1 : tensor<5xi1>, tensor<5xi1>
  }

  // CHECK: return %[[loop]]#0, %[[loop]]#1
  return %r0, %r1 : tensor<5xi1>, tensor<5xi1>
}

// -----

// Both the loop condition and the loop buffer yield non-equivalent buffers.

// CHECK-LABEL: func @scf_while_non_equiv_condition_and_body(
//  CHECK-SAME:     %[[arg0:.*]]: memref<5xi1, #{{.*}}>, %[[arg1:.*]]: memref<5xi1, #{{.*}}>
func.func @scf_while_non_equiv_condition_and_body(%arg0: tensor<5xi1>,
                                                  %arg1: tensor<5xi1>,
                                                  %idx: index)
  -> (tensor<5xi1>, tensor<5xi1>)
{
  // CHECK: %[[clone1:.*]] = bufferization.clone %[[arg1]]
  // CHECK: %[[clone0:.*]] = bufferization.clone %[[arg0]]
  // CHECK: %[[loop:.*]]:2 = scf.while (%[[w0:.*]] = %[[clone0]], %[[w1:.*]] = %[[clone1]]) {{.*}} {
  %r0, %r1 = scf.while (%w0 = %arg0, %w1 = %arg1)
      : (tensor<5xi1>, tensor<5xi1>) -> (tensor<5xi1>, tensor<5xi1>) {
    // CHECK: %[[condition:.*]] = memref.load %[[w0]]
    // CHECK: %[[a1:.*]] = memref.alloc() {{.*}} : memref<5xi1>
    // CHECK: memref.copy %[[w1]], %[[a1]]
    // CHECK: memref.dealloc %[[w1]]
    // CHECK: %[[a0:.*]] = memref.alloc() {{.*}} : memref<5xi1>
    // CHECK: memref.copy %[[w0]], %[[a0]]
    // CHECK: memref.dealloc %[[w0]]
    // CHECK: %[[casted1:.*]] = memref.cast %[[a1]]
    // CHECK: %[[casted0:.*]] = memref.cast %[[a0]]
    // CHECK: %[[cloned0:.*]] = bufferization.clone %[[casted0]]
    // CHECK: memref.dealloc %[[a0]]
    // CHECK: %[[cloned1:.*]] = bufferization.clone %[[casted1]]
    // CHECK: memref.dealloc %[[a1]]
    // CHECK: scf.condition(%[[condition]]) %[[cloned1]], %[[cloned0]]
    %condition = tensor.extract %w0[%idx] : tensor<5xi1>
    scf.condition(%condition) %w1, %w0 : tensor<5xi1>, tensor<5xi1>
  } do {
  ^bb0(%b0: tensor<5xi1>, %b1: tensor<5xi1>):
    // CHECK: } do {
    // CHECK: ^bb0(%[[b0:.*]]: memref<5xi1, #{{.*}}>, %[[b1:.*]]: memref<5xi1, #{{.*}}):
    // CHECK: memref.store %{{.*}}, %[[b0]]
    // CHECK: %[[a3:.*]] = memref.alloc() {{.*}} : memref<5xi1>
    // CHECK: memref.copy %[[b1]], %[[a3]]
    // CHECK: memref.dealloc %[[b1]]
    // CHECK: %[[a2:.*]] = memref.alloc() {{.*}} : memref<5xi1>
    // CHECK: memref.copy %[[b0]], %[[a2]]
    // CHECK: %[[casted3:.*]] = memref.cast %[[a3]]
    // CHECK: %[[casted2:.*]] = memref.cast %[[a2]]
    // CHECK: %[[cloned2:.*]] = bufferization.clone %[[casted2]]
    // CHECK: memref.dealloc %[[a2]]
    // CHECK: %[[cloned3:.*]] = bufferization.clone %[[casted3]]
    // CHECK: memref.dealloc %[[a3]]
    // CHECK: scf.yield %[[cloned3]], %[[cloned2]]
    // CHECK: }
    %pos = "dummy.some_op"() : () -> (index)
    %val = "dummy.another_op"() : () -> (i1)
    %1 = tensor.insert %val into %b0[%pos] : tensor<5xi1>
    scf.yield %b1, %1 : tensor<5xi1>, tensor<5xi1>
  }

  // CHECK: return %[[loop]]#0, %[[loop]]#1
  return %r0, %r1 : tensor<5xi1>, tensor<5xi1>
}

// -----

// CHECK-LABEL: func @scf_while_iter_arg_result_mismatch(
//  CHECK-SAME:     %[[arg0:.*]]: memref<5xi1, #{{.*}}>, %[[arg1:.*]]: memref<5xi1, #{{.*}}>
//       CHECK:   %[[clone:.*]] = bufferization.clone %[[arg1]]
//       CHECK:   scf.while (%[[arg3:.*]] = %[[clone]]) : (memref<5xi1, #{{.*}}) -> () {
//   CHECK-DAG:     memref.dealloc %[[arg3]]
//   CHECK-DAG:     %[[load:.*]] = memref.load %[[arg0]]
//       CHECK:     scf.condition(%[[load]])
//       CHECK:   } do {
//       CHECK:     %[[alloc2:.*]] = memref.alloc() {{.*}} : memref<5xi1>
//       CHECK:     memref.copy %[[arg0]], %[[alloc2]]
//       CHECK:     memref.store %{{.*}}, %[[alloc2]]
//       CHECK:     %[[casted:.*]] = memref.cast %[[alloc2]] : memref<5xi1> to memref<5xi1, #{{.*}}>
//       CHECK:     %[[cloned:.*]] = bufferization.clone %[[casted]]
//       CHECK:     memref.dealloc %[[alloc2]]
//       CHECK:     scf.yield %[[cloned]]
//       CHECK:   }
func.func @scf_while_iter_arg_result_mismatch(%arg0: tensor<5xi1>,
                                              %arg1: tensor<5xi1>,
                                              %arg2: index) {
  scf.while (%arg3 = %arg1) : (tensor<5xi1>) -> () {
    %0 = tensor.extract %arg0[%arg2] : tensor<5xi1>
    scf.condition(%0)
  } do {
    %0 = "dummy.some_op"() : () -> index
    %1 = "dummy.another_op"() : () -> i1
    %2 = tensor.insert %1 into %arg0[%0] : tensor<5xi1>
    scf.yield %2 : tensor<5xi1>
  }
  return
}

// -----

// CHECK-LABEL: func.func @parallel_insert_slice_no_conflict(
//  CHECK-SAME:     %[[idx:.*]]: index, %[[idx2:.*]]: index,
//  CHECK-SAME:     %[[arg1:.*]]: memref<?xf32, #{{.*}}>,
//  CHECK-SAME:     %[[arg2:.*]]: memref<?xf32, #{{.*}}>
func.func @parallel_insert_slice_no_conflict(
    %idx: index,
    %idx2: index,
    %arg1: tensor<?xf32> {bufferization.writable = true},
    %arg2: tensor<?xf32> {bufferization.writable = true}) -> (tensor<?xf32>, f32) {
  %cst = arith.constant 4.200000e+01 : f32
  %c0 = arith.constant 0 : index
  %c1 = arith.constant 1 : index

  // CHECK: scf.foreach_thread (%[[tidx:.*]]) in (%[[idx2]])  -> ()
  %2 = scf.foreach_thread (%arg3) in (%idx2)  -> (tensor<?xf32>) {
      // CHECK: %[[subview:.*]] = memref.subview %[[arg2]][5] [%[[idx]]] [1]
      %6 = tensor.extract_slice %arg2[5] [%idx] [%c1] : tensor<?xf32> to tensor<?xf32>
      // CHECK: linalg.fill ins(%{{.*}}) outs(%[[subview]] : memref<?xf32
      %8 = linalg.fill ins(%cst : f32) outs(%6 : tensor<?xf32>) -> tensor<?xf32>
      // Self-copy will DCE away later.
      // CHECK: memref.copy %[[subview]], %[[subview]]

      // Empty terminator is elided from pretty-printing.
      // CHECK-NOT: scf.foreach_thread.perform_concurrently
      // CHECK-NOT: parallel_insert_slice
      scf.foreach_thread.perform_concurrently {
        tensor.parallel_insert_slice %8 into %arg2[5] [%idx] [%c1] : 
          tensor<?xf32> into tensor<?xf32>
      }
  }

  // CHECK: %[[load:.*]] = memref.load %[[arg2]]
  %f = tensor.extract %2[%c0] : tensor<?xf32>

  // CHECK: return %[[load]] : f32
  return %2, %f : tensor<?xf32>, f32
}

// -----

// CHECK-LABEL: func.func @parallel_insert_slice_with_conflict(
//  CHECK-SAME:     %[[idx:.*]]: index, %[[idx2:.*]]: index,
//  CHECK-SAME:     %[[arg1:.*]]: memref<?xf32, #{{.*}}>,
//  CHECK-SAME:     %[[arg2:.*]]: memref<?xf32, #{{.*}}>
func.func @parallel_insert_slice_with_conflict(
    %idx: index, 
    %idx2: index, 
    %arg1: tensor<?xf32> {bufferization.writable = true},
    %arg2: tensor<?xf32> {bufferization.writable = true}) -> (f32, f32)
{
  %cst = arith.constant 4.200000e+01 : f32
  %c0 = arith.constant 0 : index
  %c1 = arith.constant 1 : index

  // The parallel_insert_slice_op bufferizes out-of-place due to a RAW conflict
  // on %arg2, so we need an allocation.
  // CHECK: %[[alloc1:.*]] = memref.alloc
  // CHECK: memref.copy %[[arg2]], %[[alloc1]]

  // CHECK: scf.foreach_thread (%[[tidx:.*]]) in (%[[idx2]])  -> ()
  %2 = scf.foreach_thread (%arg3) in (%idx2)  -> (tensor<?xf32>) {
      // Another alloc for the extract_slice op.
      // CHECK: %[[alloc2:.*]] = memref.alloc
      %6 = tensor.extract_slice %arg2[5] [%idx] [%c1] : tensor<?xf32> to tensor<?xf32>

      // CHECK: linalg.fill ins(%{{.*}}) outs(%[[alloc2]] : memref<?xf32
      %8 = linalg.fill ins(%cst : f32) outs(%6 : tensor<?xf32>) -> tensor<?xf32>

      // Now the copy of the actual insert_slice.
      // CHECK: %[[subview1:.*]] = memref.subview %[[alloc1]][5] [%[[idx]]] [1]
      //
      // CHECK: memref.copy %[[alloc2]], %[[subview1]]
      // CHECK: memref.dealloc %[[alloc2]]

      // Empty terminator is elided from pretty-printing.
      // CHECK-NOT: scf.foreach_thread.perform_concurrently
      // CHECK-NOT: parallel_insert_slice
      scf.foreach_thread.perform_concurrently {
        tensor.parallel_insert_slice %8 into %arg2[5] [%idx] [%c1] :
          tensor<?xf32> into tensor<?xf32>
      }
  }

  // CHECK: %[[load:.*]] = memref.load %[[arg2]]
  // CHECK: %[[load2:.*]] = memref.load %[[alloc1]]
  // CHECK: memref.dealloc %[[alloc1]]
  %f = tensor.extract %arg2[%c0] : tensor<?xf32>
  %f2 = tensor.extract %2[%c0] : tensor<?xf32>

  // CHECK: return %[[load2]], %[[load]] : f32, f32
  return %f2, %f : f32, f32
}

// -----

#map0 = affine_map<(d0) -> (d0 * 4)>
#map1 = affine_map<(d0) -> (d0 * 2)>

// CHECK: #[[$DYN_LAYOUT_MAP:.*]] = affine_map<(d0, d1)[s0, s1, s2] -> (d0 * s1 + s0 + d1 * s2)>

// CHECK-LABEL: func.func @matmul
func.func @matmul(%arg0: tensor<8x8xf32>, %arg1: tensor<8x8xf32>, %arg2: tensor<8x8xf32> {bufferization.writable = true}) -> tensor<8x8xf32> {
  %c2 = arith.constant 2 : index
  %c4 = arith.constant 4 : index

  // CHECK: scf.foreach_thread {{.*}}  -> ()
  %0 = scf.foreach_thread (%arg3, %arg4) in (%c2, %c4) -> (tensor<8x8xf32>) {
    %1 = affine.apply #map0(%arg3)
    %3 = tensor.extract_slice %arg0[%1, 0] [4, 8] [1, 1] : tensor<8x8xf32> to tensor<4x8xf32>
    %4 = affine.apply #map1(%arg4)
    %6 = tensor.extract_slice %arg1[0, %4] [8, 4] [1, 1] : tensor<8x8xf32> to tensor<8x4xf32>
    %7 = tensor.extract_slice %arg2[%1, %4] [4, 4] [1, 1] : tensor<8x8xf32> to tensor<4x4xf32>
 
    //      CHECK: linalg.matmul ins({{.*}}memref<4x8xf32, #[[$DYN_LAYOUT_MAP]]>, memref<8x4xf32, #[[$DYN_LAYOUT_MAP]]>) outs({{.*}} : memref<4x4xf32, #[[$DYN_LAYOUT_MAP]]>)
    %8 = linalg.matmul ins(%3, %6 : tensor<4x8xf32>, tensor<8x4xf32>) outs(%7 : tensor<4x4xf32>) -> tensor<4x4xf32>
    scf.foreach_thread.perform_concurrently {
      tensor.parallel_insert_slice %8 into %arg2[%1, %4] [4, 4] [1, 1] : tensor<4x4xf32> into tensor<8x8xf32>
    }
  }
  return %0 : tensor<8x8xf32>
}

// -----

// CHECK-LABEL: func @scf_if_memory_space
func.func @scf_if_memory_space(%c: i1, %f: f32) -> (f32, f32)
{
  %c0 = arith.constant 0 : index
  // CHECK: %[[alloc:.*]] = memref.alloc() {{.*}} : memref<5xf32, 1>
  %0 = bufferization.alloc_tensor() {memory_space = 1 : ui64} : tensor<5xf32>
  // CHECK: scf.if %{{.*}} -> (memref<5xf32, 1>) {
  %1 = scf.if %c -> tensor<5xf32> {
    // CHECK: %[[cloned:.*]] = bufferization.clone %[[alloc]]
    // CHECK: scf.yield %[[cloned]]
    scf.yield %0 : tensor<5xf32>
  } else {
    // CHECK: %[[alloc2:.*]] = memref.alloc() {{.*}} : memref<5xf32, 1>
    // CHECK: memref.store %{{.*}}, %[[alloc2]]
    // CHECK: %[[cloned2:.*]] = bufferization.clone %[[alloc2]]
    // CHECK: memref.dealloc %[[alloc2]]
    // CHECK: scf.yield %[[cloned2]]
    %2 = tensor.insert %f into %0[%c0] : tensor<5xf32>
    scf.yield %2 : tensor<5xf32>
  }
  %r0 = tensor.extract %0[%c0] : tensor<5xf32>
  %r1 = tensor.extract %1[%c0] : tensor<5xf32>
  return %r0, %r1 : f32, f32
}

// -----

// CHECK-LABEL: func @scf_execute_region_memory_space
// CHECK: memref.alloc() {{.*}} : memref<5xf32, 1>
// CHECK: memref.store
// CHECK: memref.load
// CHECK: memref.dealloc
func.func @scf_execute_region_memory_space(%f: f32) -> f32 {
  %c0 = arith.constant 0 : index
  %0 = scf.execute_region -> tensor<5xf32> {
    %1 = bufferization.alloc_tensor() {memory_space = 1 : ui64} : tensor<5xf32>
    %2 = tensor.insert %f into %1[%c0] : tensor<5xf32>
    scf.yield %2 : tensor<5xf32>
  }
  %r = tensor.extract %0[%c0] : tensor<5xf32>
  return %r : f32
}

// -----

// Additional allocs are inserted in the loop body. We just check that all
// allocs have the correct memory space.

// CHECK-LABEL: func @scf_for_swapping_yields_memory_space
func.func @scf_for_swapping_yields_memory_space(
    %sz: index, %C : tensor<4xf32>, %lb : index, %ub : index, %step : index)
  -> (f32, f32)
{
  // CHECK: memref.alloc(%{{.*}}) {{.*}} : memref<?xf32, 1>
  // CHECK: memref.alloc(%{{.*}}) {{.*}} : memref<?xf32, 1>
  %A = bufferization.alloc_tensor(%sz) {memory_space = 1 : ui64} : tensor<?xf32>
  %B = bufferization.alloc_tensor(%sz) {memory_space = 1 : ui64} : tensor<?xf32>

  // CHECK: scf.for {{.*}} {
  %r0:2 = scf.for %i = %lb to %ub step %step iter_args(%tA = %A, %tB = %B)
      -> (tensor<?xf32>, tensor<?xf32>)
  {
    // CHECK: memref.alloc(%{{.*}}) {{.*}} : memref<?xf32, 1>
    // CHECK: memref.alloc(%{{.*}}) {{.*}} : memref<?xf32, 1>
    %ttA = tensor.insert_slice %C into %tA[0][4][1] : tensor<4xf32> into tensor<?xf32>
    %ttB = tensor.insert_slice %C into %tB[0][4][1] : tensor<4xf32> into tensor<?xf32>
    // Yield tensors in different order.
    scf.yield %ttB, %ttA : tensor<?xf32>, tensor<?xf32>
  }
  // CHECK: }
  %f0 = tensor.extract %r0#0[%step] : tensor<?xf32>
  %f1 = tensor.extract %r0#1[%step] : tensor<?xf32>
  return %f0, %f1: f32, f32
}