1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
// RUN: mlir-opt %s -test-transform-dialect-interpreter --split-input-file | FileCheck %s
// CHECK-LABEL: func.func @matmul_tensors_1(
func.func @matmul_tensors_1(
%arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>,
%arg2: tensor<128x128xf32>)
-> tensor<128x128xf32> {
// This operation is marked for tiling only.
// CHECK-COUNT-3: scf.for
// CHECK-COUNT-3: tensor.extract_slice
// CHECK: linalg.matmul
// CHECK-SAME: -> tensor<4x4xf32>
%0 = linalg.matmul { test.attrA }
ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
outs(%arg2: tensor<128x128xf32>)
-> tensor<128x128xf32>
func.return %0 : tensor<128x128xf32>
}
func.func @matmul_tensors_2(
%arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>,
%arg2: tensor<128x128xf32>)
-> tensor<128x128xf32> {
// This operation is marked f
// This operation is marked for tiling and vectorization.
// CHECK-COUNT-3: scf.for
// CHECK-COUNT-3: vector.transfer_read
// CHECK: vector.contract
// CHECK-NOT: linalg.matmul
// CHECK: vector.transfer_write
%0 = linalg.matmul { test.attrA, test.attrC }
ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
outs(%arg2: tensor<128x128xf32>)
-> tensor<128x128xf32>
func.return %0 : tensor<128x128xf32>
}
func.func @matmul_tensors_3(
%arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>,
%arg2: tensor<128x128xf32>)
-> tensor<128x128xf32> {
// This operation is marked for vectorization only.
// CHECK-NOT: scf.for
// CHECK-COUNT-3: vector.transfer_read
// CHECK: vector.contract
// CHECK-SAME: into vector<128x128xf32>
// CHECK: vector.transfer_write
%0 = linalg.matmul { test.attrC }
ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
outs(%arg2: tensor<128x128xf32>)
-> tensor<128x128xf32>
func.return %0 : tensor<128x128xf32>
}
transform.with_pdl_patterns {
^bb0(%arg0: !pdl.operation):
// Match matmul operations inside @matmul_tensors with test.attrA set.
pdl.pattern @pdl_target_attrA : benefit(1) {
%args = operands
%results = types
%attr = attribute
%0 = operation "linalg.matmul"(%args : !pdl.range<value>) {"test.attrA" = %attr}-> (%results : !pdl.range<type>)
// TODO: we don't want this, but it is the required terminator for pdl.pattern
rewrite %0 with "transform.dialect"
}
// Match matmul operations inside @matmul_tensors with test.attrC set.
pdl.pattern @pdl_target_attrC : benefit(1) {
%args = operands
%results = types
%attr = attribute
%0 = operation "linalg.matmul"(%args : !pdl.range<value>) {"test.attrC" = %attr}-> (%results : !pdl.range<type>)
// TODO: we don't want this, but it is the required terminator for pdl.pattern
rewrite %0 with "transform.dialect"
}
transform.sequence %arg0 {
^bb1(%arg1: !pdl.operation):
%0 = pdl_match @pdl_target_attrA in %arg1
transform.structured.tile %0 [4, 4, 4]
%1 = pdl_match @pdl_target_attrC in %arg1
%2 = transform.get_closest_isolated_parent %1
transform.structured.vectorize %2
}
}
// -----
// CHECK-LABEL: @vectorize_one
func.func @vectorize_one(
%arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>,
%arg2: tensor<128x128xf32>)
-> tensor<128x128xf32> {
// CHECK: vector.contract
%0 = linalg.matmul {test.attrA}
ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
outs(%arg2: tensor<128x128xf32>)
-> tensor<128x128xf32>
func.return %0 : tensor<128x128xf32>
}
func.func @vectorize_none(
%arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>,
%arg2: tensor<128x128xf32>)
-> tensor<128x128xf32> {
// CHECK: linalg.matmul
%0 = linalg.matmul ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
outs(%arg2: tensor<128x128xf32>)
-> tensor<128x128xf32>
func.return %0 : tensor<128x128xf32>
}
transform.with_pdl_patterns {
^bb0(%arg0: !pdl.operation):
pdl.pattern @pdl_target : benefit(1) {
%args = operands
%results = types
%attr = attribute
%0 = operation "linalg.matmul"(%args : !pdl.range<value>) {"test.attrA" = %attr}-> (%results : !pdl.range<type>)
// TODO: we don't want this, but it is the required terminator for pdl.pattern
rewrite %0 with "transform.dialect"
}
transform.sequence %arg0 {
^bb1(%arg1: !pdl.operation):
%0 = pdl_match @pdl_target in %arg1
%1 = get_closest_isolated_parent %0
transform.structured.vectorize %1
}
}
// -----
// CHECK-LABEL: @vectorize_all
func.func @vectorize_all(
%arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>, %arg2: tensor<128x128xf32>,
%arg3: tensor<128x128xf32>)
-> tensor<128x128xf32> {
// CHECK: vector.contract
%0 = linalg.matmul {test.attrA}
ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
outs(%arg2: tensor<128x128xf32>)
-> tensor<128x128xf32>
// CHECK: vector.contract
%1 = linalg.matmul ins(%arg0, %0: tensor<128x128xf32>, tensor<128x128xf32>)
outs(%arg3: tensor<128x128xf32>)
-> tensor<128x128xf32>
return %1 : tensor<128x128xf32>
}
transform.sequence {
^bb0(%arg0: !pdl.operation):
transform.structured.vectorize %arg0
}
|