File: MergerTest.cpp

package info (click to toggle)
llvm-toolchain-15 1%3A15.0.6-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,554,644 kB
  • sloc: cpp: 5,922,452; ansic: 1,012,136; asm: 674,362; python: 191,568; objc: 73,855; f90: 42,327; lisp: 31,913; pascal: 11,973; javascript: 10,144; sh: 9,421; perl: 7,447; ml: 5,527; awk: 3,523; makefile: 2,520; xml: 885; cs: 573; fortran: 567
file content (642 lines) | stat: -rw-r--r-- 27,720 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
#include "mlir/Dialect/SparseTensor/Utils/Merger.h"
#include "llvm/Support/Compiler.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include <memory>

using namespace mlir;
using namespace mlir::sparse_tensor;

// Silence 'warning C4002: 'too many arguments for function-liked macro
//                          invocation'
// as MSVC handles ##__VA_ARGS__ differently as gcc/clang

#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(push)
#pragma warning(disable : 4002)
#endif

namespace {

///
/// Defines macros to iterate binary and the combination of binary operations.
///

#define FOREVERY_BINOP(DO)                                                     \
  DO(mulf, Kind::kMulF)                                                        \
  DO(mulc, Kind::kMulC)                                                        \
  DO(muli, Kind::kMulI)                                                        \
  DO(addf, Kind::kAddF)                                                        \
  DO(addc, Kind::kAddC)                                                        \
  DO(addi, Kind::kAddI)                                                        \
  DO(subf, Kind::kSubF)                                                        \
  DO(subc, Kind::kSubC)                                                        \
  DO(subi, Kind::kSubI)                                                        \
  DO(andi, Kind::kAndI)                                                        \
  DO(xori, Kind::kXorI)                                                        \
  DO(ori, Kind::kOrI)

// TODO: Disjunctive binary operations that need special handling are not
// included, e.g., Division are not tested (for now) as it need a constant
// non-zero dividend.
// ##__VA_ARGS__ handles cases when __VA_ARGS__ is empty.
#define FOREVERY_COMMON_DISJ_BINOP(TEST, ...)                                  \
  TEST(addf, ##__VA_ARGS__)                                                    \
  TEST(addc, ##__VA_ARGS__)                                                    \
  TEST(addi, ##__VA_ARGS__)                                                    \
  TEST(xori, ##__VA_ARGS__)                                                    \
  TEST(ori, ##__VA_ARGS__)

// TODO: Conjunctive binary operations that need special handling are not
// included, e.g., substraction yields a different pattern as it is mapped to
// negate operation.
#define FOREVERY_COMMON_CONJ_BINOP(TEST, ...)                                  \
  TEST(mulf, ##__VA_ARGS__)                                                    \
  TEST(mulc, ##__VA_ARGS__)                                                    \
  TEST(muli, ##__VA_ARGS__)                                                    \
  TEST(andi, ##__VA_ARGS__)

#define FOREVERY_PAIR_OF_COMMON_CONJ_DISJ_BINOP(TEST)                          \
  FOREVERY_COMMON_CONJ_BINOP(TEST, addf)                                       \
  FOREVERY_COMMON_CONJ_BINOP(TEST, addc)                                       \
  FOREVERY_COMMON_CONJ_BINOP(TEST, addi)                                       \
  FOREVERY_COMMON_CONJ_BINOP(TEST, xori)                                       \
  FOREVERY_COMMON_CONJ_BINOP(TEST, ori)

#define FOREVERY_PAIR_OF_COMMON_CONJ_CONJ_BINOP(TEST)                          \
  FOREVERY_COMMON_CONJ_BINOP(TEST, mulf)                                       \
  FOREVERY_COMMON_CONJ_BINOP(TEST, mulc)                                       \
  FOREVERY_COMMON_CONJ_BINOP(TEST, muli)                                       \
  FOREVERY_COMMON_CONJ_BINOP(TEST, andi)

#define FOREVERY_PAIR_OF_COMMON_DISJ_DISJ_BINOP(TEST)                          \
  FOREVERY_COMMON_DISJ_BINOP(TEST, addf)                                       \
  FOREVERY_COMMON_DISJ_BINOP(TEST, addc)                                       \
  FOREVERY_COMMON_DISJ_BINOP(TEST, addi)                                       \
  FOREVERY_COMMON_DISJ_BINOP(TEST, ori)                                        \
  FOREVERY_COMMON_DISJ_BINOP(TEST, xori)

///
/// Helper classes/functions for testing Merger.
///

/// Simple recursive data structure used to match expressions in Mergers.
struct Pattern {
  Kind kind;

  /// Expressions representing tensors simply have a tensor number.
  unsigned tensorNum;

  /// Tensor operations point to their children.
  std::shared_ptr<Pattern> e0;
  std::shared_ptr<Pattern> e1;

  /// Constructors.
  /// Rather than using these, please use the readable helper constructor
  /// functions below to make tests more readable.
  Pattern(unsigned tensorNum) : kind(Kind::kTensor), tensorNum(tensorNum) {}
  Pattern(Kind kind, const std::shared_ptr<Pattern> &e0,
          const std::shared_ptr<Pattern> &e1)
      : kind(kind), e0(e0), e1(e1) {
    assert(kind >= Kind::kMulF);
    assert(e0 && e1);
  }
};

///
/// Readable Pattern builder functions.
/// These should be preferred over the actual constructors.
///

static std::shared_ptr<Pattern> tensorPattern(unsigned tensorNum) {
  return std::make_shared<Pattern>(tensorNum);
}

#define IMPL_BINOP_PATTERN(OP, KIND)                                           \
  LLVM_ATTRIBUTE_UNUSED static std::shared_ptr<Pattern> OP##Pattern(           \
      const std::shared_ptr<Pattern> &e0,                                      \
      const std::shared_ptr<Pattern> &e1) {                                    \
    return std::make_shared<Pattern>(KIND, e0, e1);                            \
  }

FOREVERY_BINOP(IMPL_BINOP_PATTERN)

#undef IMPL_BINOP_PATTERN

class MergerTestBase : public ::testing::Test {
protected:
  MergerTestBase(unsigned numTensors, unsigned numLoops)
      : numTensors(numTensors), numLoops(numLoops),
        merger(numTensors, numLoops) {}

  ///
  /// Expression construction helpers.
  ///

  unsigned tensor(unsigned tensor) {
    return merger.addExp(Kind::kTensor, tensor);
  }

#define IMPL_BINOP_EXPR(OP, KIND)                                              \
  LLVM_ATTRIBUTE_UNUSED unsigned OP##Expr(unsigned e0, unsigned e1) {          \
    return merger.addExp(KIND, e0, e1);                                        \
  }

  FOREVERY_BINOP(IMPL_BINOP_EXPR)

#undef IMPL_BINOP_EXPR

  ///
  /// Comparison helpers.
  ///

  /// For readability of tests.
  unsigned lat(unsigned lat) { return lat; }

  /// Returns true if a lattice point with an expression matching the given
  /// pattern and bits matching the given bits is present in lattice points
  /// [p, p+n) of lattice set s. This is useful for testing partial ordering
  /// constraints between lattice points. We generally know how contiguous
  /// groups of lattice points should be ordered with respect to other groups,
  /// but there is no required ordering within groups.
  /// If simple is true, then compare the lat.simple field instead to test the
  /// result after optimization
  bool latPointWithinRange(unsigned s, unsigned p, unsigned n,
                           const std::shared_ptr<Pattern> &pattern,
                           const BitVector &bits, bool simple) {
    for (unsigned i = p; i < p + n; ++i) {
      if (compareExpression(merger.lat(merger.set(s)[i]).exp, pattern) &&
          compareBits(s, i, bits, simple))
        return true;
    }
    return false;
  }

  /// Wrapper over latPointWithinRange for readability of tests.
  void expectLatPointWithinRange(unsigned s, unsigned p, unsigned n,
                                 const std::shared_ptr<Pattern> &pattern,
                                 const BitVector &bits, bool simple = false) {
    EXPECT_TRUE(latPointWithinRange(s, p, n, pattern, bits, simple));
  }

  /// Wrapper over expectLatPointWithinRange for a single lat point.
  void expectLatPoint(unsigned s, unsigned p,
                      const std::shared_ptr<Pattern> &pattern,
                      const BitVector &bits, bool simple = false) {
    EXPECT_TRUE(latPointWithinRange(s, p, 1, pattern, bits, simple));
  }

  /// Converts a vector of (loop, tensor) pairs to a bitvector with the
  /// corresponding bits set.
  BitVector
  loopsToBits(const std::vector<std::pair<unsigned, unsigned>> &loops) {
    BitVector testBits = BitVector(numTensors + 1, false);
    for (auto l : loops) {
      auto loop = std::get<0>(l);
      auto tensor = std::get<1>(l);
      testBits.set(numTensors * loop + tensor);
    }
    return testBits;
  }

  /// Returns true if the bits of lattice point p in set s match the given bits.
  /// If simple is true, then compare the lat.simple field instead to test the
  /// result after optimization
  bool compareBits(unsigned s, unsigned p, const BitVector &bits, bool simple) {
    if (simple)
      return merger.lat(merger.set(s)[p]).simple == bits;
    return merger.lat(merger.set(s)[p]).bits == bits;
  }

  /// Check that there are n lattice points in set s.
  void expectNumLatPoints(unsigned s, unsigned n) {
    EXPECT_THAT(merger.set(s).size(), n);
  }

  /// Compares expressions for equality. Equality is defined recursively as:
  /// - Operations are equal if they have the same kind and children.
  /// - Leaf tensors are equal if they refer to the same tensor.
  bool compareExpression(unsigned e, const std::shared_ptr<Pattern> &pattern) {
    auto tensorExp = merger.exp(e);
    if (tensorExp.kind != pattern->kind)
      return false;
    switch (tensorExp.kind) {
    // Leaf.
    case kTensor:
      return tensorExp.tensor == pattern->tensorNum;
    case kInvariant:
    case kIndex:
      llvm_unreachable("invariant not handled yet");
    // Unary operations.
    case kAbsF:
    case kAbsC:
    case kCeilF:
    case kFloorF:
    case kSqrtF:
    case kSqrtC:
    case kExpm1F:
    case kExpm1C:
    case kLog1pF:
    case kLog1pC:
    case kSinF:
    case kSinC:
    case kTanhF:
    case kTanhC:
    case kNegF:
    case kNegC:
    case kNegI:
    case kTruncF:
    case kExtF:
    case kCastFS:
    case kCastFU:
    case kCastSF:
    case kCastUF:
    case kCastS:
    case kCastU:
    case kCastIdx:
    case kTruncI:
    case kCIm:
    case kCRe:
    case kBitCast:
    case kBinaryBranch:
    case kUnary:
    case kShlI:
    case kBinary:
      return compareExpression(tensorExp.children.e0, pattern->e0);
    // Binary operations.
    case kMulF:
    case kMulC:
    case kMulI:
    case kDivF:
    case kDivC:
    case kDivS:
    case kDivU:
    case kAddF:
    case kAddC:
    case kAddI:
    case kSubF:
    case kSubC:
    case kSubI:
    case kAndI:
    case kOrI:
    case kXorI:
    case kShrS:
    case kShrU:
      return compareExpression(tensorExp.children.e0, pattern->e0) &&
             compareExpression(tensorExp.children.e1, pattern->e1);
    }
    llvm_unreachable("unexpected kind");
  }

  unsigned numTensors;
  unsigned numLoops;
  Merger merger;
};

///
/// Tests with all sparse inputs.
///

class MergerTest3T1L : public MergerTestBase {
protected:
  // Our three tensors (two inputs, one output).
  const unsigned t0 = 0, t1 = 1, t2 = 2;

  // Our single loop.
  const unsigned l0 = 0;

  MergerTest3T1L() : MergerTestBase(3, 1) {
    // Tensor 0: sparse input vector.
    merger.addExp(Kind::kTensor, t0, -1u);
    merger.setDim(t0, l0, Dim::kSparse);

    // Tensor 1: sparse input vector.
    merger.addExp(Kind::kTensor, t1, -1u);
    merger.setDim(t1, l0, Dim::kSparse);

    // Tensor 2: dense output vector.
    merger.addExp(Kind::kTensor, t2, -1u);
    merger.setDim(t2, l0, Dim::kDense);
  }
};

class MergerTest4T1L : public MergerTestBase {
protected:
  // Our four tensors (three inputs, one output).
  const unsigned t0 = 0, t1 = 1, t2 = 2, t3 = 3;

  // Our single loop.
  const unsigned l0 = 0;

  MergerTest4T1L() : MergerTestBase(4, 1) {
    // Tensor 0: sparse input vector.
    merger.addExp(Kind::kTensor, t0, -1u);
    merger.setDim(t0, l0, Dim::kSparse);

    // Tensor 1: sparse input vector.
    merger.addExp(Kind::kTensor, t1, -1u);
    merger.setDim(t1, l0, Dim::kSparse);

    // Tensor 2: sparse input vector
    merger.addExp(Kind::kTensor, t2, -1u);
    merger.setDim(t2, l0, Dim::kSparse);

    // Tensor 3: dense output vector
    merger.addExp(Kind::kTensor, t3, -1u);
    merger.setDim(t3, l0, Dim::kDense);
  }
};

///
/// Tests with both sparse and dense input.
///

class MergerTest3T1LD : public MergerTestBase {
protected:
  // Our three tensors (two inputs, one output).
  const unsigned t0 = 0, t1 = 1, t2 = 2;

  // Our single loop.
  const unsigned l0 = 0;

  MergerTest3T1LD() : MergerTestBase(3, 1) {
    // Tensor 0: sparse input vector.
    merger.addExp(Kind::kTensor, t0, -1u);
    merger.setDim(t0, l0, Dim::kSparse);

    // Tensor 1: dense input vector.
    merger.addExp(Kind::kTensor, t1, -1u);
    merger.setDim(t1, l0, Dim::kDense);

    // Tensor 2: dense output vector.
    merger.addExp(Kind::kTensor, t2, -1u);
    merger.setDim(t2, l0, Dim::kDense);
  }
};

} // namespace

/// Vector addition (disjunction) of 2 vectors. i.e.;
///   a(i) = b(i) + c(i)
/// which should form the 3 lattice points
/// {
///   lat( i_00 i_01 / (tensor_0 + tensor_1) )
///   lat( i_00 / tensor_0 )
///   lat( i_01 / tensor_1 )
/// }
/// and after optimization, the lattice points do not change (as there is no
/// duplicated point and all input vectors are sparse vector).
/// {
///   lat( i_00 i_01 / (tensor_0 + tensor_1) )
///   lat( i_00 / tensor_0 )
///   lat( i_01 / tensor_1 )
/// }
#define IMPL_MERGER_TEST_DISJ(OP)                                              \
  TEST_F(MergerTest3T1L, vector_##OP) {                                        \
    auto e = OP##Expr(tensor(t0), tensor(t1));                                 \
    auto p0 = tensorPattern(t0);                                               \
    auto p1 = tensorPattern(t1);                                               \
    auto s = merger.buildLattices(e, l0);                                      \
                                                                               \
    expectNumLatPoints(s, 3);                                                  \
    expectLatPoint(s, lat(0), OP##Pattern(p0, p1),                             \
                   loopsToBits({{l0, t0}, {l0, t1}}));                         \
    expectLatPointWithinRange(s, lat(1), 2, p0, loopsToBits({{l0, t0}}));      \
    expectLatPointWithinRange(s, lat(1), 2, p1, loopsToBits({{l0, t1}}));      \
                                                                               \
    s = merger.optimizeSet(s);                                                 \
    expectNumLatPoints(s, 3);                                                  \
    expectLatPoint(s, lat(0), OP##Pattern(p0, p1),                             \
                   loopsToBits({{l0, t0}, {l0, t1}}), true);                   \
    expectLatPointWithinRange(s, lat(1), 2, p0, loopsToBits({{l0, t0}}),       \
                              true);                                           \
    expectLatPointWithinRange(s, lat(1), 2, p1, loopsToBits({{l0, t1}}),       \
                              true);                                           \
  }

FOREVERY_COMMON_DISJ_BINOP(IMPL_MERGER_TEST_DISJ)

#undef IMPL_MERGER_TEST_DISJ

/// Vector multiplication (conjunction) of 2 vectors, i.e.;
///   a(i) = b(i) * c(i)
/// which should form the single lattice point
/// {
///   lat( i_00 i_01 / (tensor_0 * tensor_1) )
/// }
#define IMPL_MERGER_TEST_CONJ(OP)                                              \
  TEST_F(MergerTest3T1L, vector_##OP) {                                        \
    auto e = OP##Expr(t0, t1);                                                 \
    auto p0 = tensorPattern(t0);                                               \
    auto p1 = tensorPattern(t1);                                               \
    auto s = merger.buildLattices(e, l0);                                      \
                                                                               \
    expectNumLatPoints(s, 1);                                                  \
    expectLatPoint(s, lat(0), OP##Pattern(p0, p1),                             \
                   loopsToBits({{l0, t0}, {l0, t1}}));                         \
                                                                               \
    s = merger.optimizeSet(s);                                                 \
    expectNumLatPoints(s, 1);                                                  \
    expectLatPoint(s, lat(0), OP##Pattern(p0, p1),                             \
                   loopsToBits({{l0, t0}, {l0, t1}}), true);                   \
  }

FOREVERY_COMMON_CONJ_BINOP(IMPL_MERGER_TEST_CONJ)

#undef IMPL_MERGER_TEST_CONJ

/// Vector multiplication (conjunction) then addition (disjunction), i.e.;
///   a(i) = b(i) * c(i) + d(i);
/// which should form
/// {
///    lat( i_00 i_01 i_02 / (tensor_0 * tensor_1) + tensor_2 )
///    lat( i_00 i_01 / tensor_0 * tensor_1
///    lat( i_02 / tensor_2 )
/// }
#define IMPL_MERGER_TEST_CONJ_DISJ(CONJ, DISJ)                                 \
  TEST_F(MergerTest4T1L, vector_##CONJ##_##DISJ) {                             \
    auto em = CONJ##Expr(t0, t1);                                              \
    auto e = DISJ##Expr(em, t2);                                               \
    auto p0 = tensorPattern(t0);                                               \
    auto p1 = tensorPattern(t1);                                               \
    auto p2 = tensorPattern(t2);                                               \
    auto s = merger.buildLattices(e, l0);                                      \
                                                                               \
    expectNumLatPoints(s, 3);                                                  \
    expectLatPoint(s, lat(0), DISJ##Pattern(CONJ##Pattern(p0, p1), p2),        \
                   loopsToBits({{l0, t0}, {l0, t1}, {l0, t2}}));               \
    expectLatPointWithinRange(s, lat(1), 2, CONJ##Pattern(p0, p1),             \
                              loopsToBits({{l0, t0}, {l0, t1}}));              \
    expectLatPointWithinRange(s, lat(1), 2, p2, loopsToBits({{l0, t2}}));      \
                                                                               \
    s = merger.optimizeSet(s);                                                 \
    expectNumLatPoints(s, 3);                                                  \
    expectLatPoint(s, lat(0), DISJ##Pattern(CONJ##Pattern(p0, p1), p2),        \
                   loopsToBits({{l0, t0}, {l0, t1}, {l0, t2}}));               \
    expectLatPointWithinRange(s, lat(1), 2, CONJ##Pattern(p0, p1),             \
                              loopsToBits({{l0, t0}, {l0, t1}}));              \
    expectLatPointWithinRange(s, lat(1), 2, p2, loopsToBits({{l0, t2}}));      \
  }

FOREVERY_PAIR_OF_COMMON_CONJ_DISJ_BINOP(IMPL_MERGER_TEST_CONJ_DISJ)

#undef IMPL_MERGER_TEST_CONJ_DISJ

/// Vector addition (disjunction) then addition (disjunction), i.e.;
///   a(i) = b(i) + c(i) + d(i)
/// which should form
/// {
///   lat( i_00 i_01 i_02 / (tensor_0 + tensor_1) + tensor_2 )
///   lat( i_02 i_01 / tensor_2 + tensor_1 )
///   lat( i_02 i_00 / tensor_2 + tensor_0 )
///   lat( i_01 i_00 / tensor_1 + tensor_0 )
///   lat( i_02 / tensor_2 )
///   lat( i_01 / tensor_1 )
///   lat( i_00 / tensor_0 )
/// }
#define IMPL_MERGER_TEST_DISJ_DISJ(DISJ1, DISJ2)                               \
  TEST_F(MergerTest4T1L, Vector_##DISJ1##_##DISJ2) {                           \
    auto em = DISJ1##Expr(t0, t1);                                             \
    auto e = DISJ2##Expr(em, t2);                                              \
    auto p0 = tensorPattern(t0);                                               \
    auto p1 = tensorPattern(t1);                                               \
    auto p2 = tensorPattern(t2);                                               \
    auto s = merger.buildLattices(e, l0);                                      \
                                                                               \
    expectNumLatPoints(s, 7);                                                  \
    expectLatPoint(s, lat(0), DISJ2##Pattern(DISJ1##Pattern(p0, p1), p2),      \
                   loopsToBits({{l0, t0}, {l0, t1}, {l0, t2}}));               \
    expectLatPointWithinRange(s, lat(1), 6, DISJ2##Pattern(p1, p2),            \
                              loopsToBits({{l0, t1}, {l0, t2}}));              \
    expectLatPointWithinRange(s, lat(1), 6, DISJ2##Pattern(p0, p2),            \
                              loopsToBits({{l0, t0}, {l0, t2}}));              \
    expectLatPointWithinRange(s, lat(1), 6, DISJ1##Pattern(p0, p1),            \
                              loopsToBits({{l0, t0}, {l0, t1}}));              \
    expectLatPointWithinRange(s, lat(1), 6, p2, loopsToBits({{l0, t2}}));      \
    expectLatPointWithinRange(s, lat(1), 6, p1, loopsToBits({{l0, t1}}));      \
    expectLatPointWithinRange(s, lat(1), 6, p0, loopsToBits({{l0, t0}}));      \
                                                                               \
    s = merger.optimizeSet(s);                                                 \
    expectNumLatPoints(s, 7);                                                  \
    expectLatPoint(s, lat(0), DISJ2##Pattern(DISJ1##Pattern(p0, p1), p2),      \
                   loopsToBits({{l0, t0}, {l0, t1}, {l0, t2}}));               \
    expectLatPointWithinRange(s, lat(1), 6, DISJ2##Pattern(p1, p2),            \
                              loopsToBits({{l0, t1}, {l0, t2}}));              \
    expectLatPointWithinRange(s, lat(1), 6, DISJ2##Pattern(p0, p2),            \
                              loopsToBits({{l0, t0}, {l0, t2}}));              \
    expectLatPointWithinRange(s, lat(1), 6, DISJ1##Pattern(p0, p1),            \
                              loopsToBits({{l0, t0}, {l0, t1}}));              \
    expectLatPointWithinRange(s, lat(1), 6, p2, loopsToBits({{l0, t2}}));      \
    expectLatPointWithinRange(s, lat(1), 6, p1, loopsToBits({{l0, t1}}));      \
    expectLatPointWithinRange(s, lat(1), 6, p0, loopsToBits({{l0, t0}}));      \
  }

FOREVERY_PAIR_OF_COMMON_DISJ_DISJ_BINOP(IMPL_MERGER_TEST_DISJ_DISJ)

#undef IMPL_MERGER_TEST_DISJ_DISJ

/// Vector multiplication (conjunction) then multiplication (conjunction), i.e.;
///   a(i) = b(i) * c(i) * d(i);
/// which should form
/// {
///    lat( i_00 i_01 i_02 / tensor_0 * tensor_1 * tensor_2 )
/// }
#define IMPL_MERGER_TEST_CONJ_CONJ(CONJ1, CONJ2)                               \
  TEST_F(MergerTest4T1L, vector_##CONJ1##_##CONJ2) {                           \
    auto em = CONJ1##Expr(t0, t1);                                             \
    auto e = CONJ2##Expr(em, t2);                                              \
    auto p0 = tensorPattern(t0);                                               \
    auto p1 = tensorPattern(t1);                                               \
    auto p2 = tensorPattern(t2);                                               \
    auto s = merger.buildLattices(e, l0);                                      \
    expectNumLatPoints(s, 1);                                                  \
    expectLatPoint(s, lat(0), CONJ2##Pattern(CONJ1##Pattern(p0, p1), p2),      \
                   loopsToBits({{l0, t0}, {l0, t1}, {l0, t2}}));               \
    s = merger.optimizeSet(s);                                                 \
    expectNumLatPoints(s, 1);                                                  \
    expectLatPoint(s, lat(0), CONJ2##Pattern(CONJ1##Pattern(p0, p1), p2),      \
                   loopsToBits({{l0, t0}, {l0, t1}, {l0, t2}}), true);         \
  }

FOREVERY_PAIR_OF_COMMON_CONJ_CONJ_BINOP(IMPL_MERGER_TEST_CONJ_CONJ)

#undef IMPL_MERGER_TEST_CONJ_CONJ

/// Vector addition (disjunction) of 2 vectors, i.e.;
///   a(i) = b(i) + c(i)
/// which should form the 3 lattice points
/// {
///   lat( i_00 i_01 / (sparse_tensor_0 + dense_tensor_1) )
///   lat( i_00 / sparse_tensor_0 )
///   lat( i_01 / dense_tensor_1 )
/// }
/// which should be optimized to
/// {
///   lat( i_00 i_01 / (sparse_tensor_0 + dense_tensor_1) ) (not singleton)
///   lat( i_01 / dense_tensor_0 ) (no sparse dimension)
/// }
///
/// lat( i_00 / sparse_tensor_0 ) should be opted out as it only has dense diff
/// with lat( i_00 i_01 / (sparse_tensor_0 + dense_tensor_1) ).
#define IMPL_MERGER_TEST_OPTIMIZED_DISJ(OP)                                    \
  TEST_F(MergerTest3T1LD, vector_opted_##OP) {                                 \
    auto e = OP##Expr(tensor(t0), tensor(t1));                                 \
    auto p0 = tensorPattern(t0);                                               \
    auto p1 = tensorPattern(t1);                                               \
    auto s = merger.buildLattices(e, l0);                                      \
                                                                               \
    expectNumLatPoints(s, 3);                                                  \
    expectLatPoint(s, lat(0), OP##Pattern(p0, p1),                             \
                   loopsToBits({{l0, t0}, {l0, t1}}));                         \
    expectLatPointWithinRange(s, lat(1), 2, p0, loopsToBits({{l0, t0}}));      \
    expectLatPointWithinRange(s, lat(1), 2, p1, loopsToBits({{l0, t1}}));      \
                                                                               \
    s = merger.optimizeSet(s);                                                 \
    expectNumLatPoints(s, 2);                                                  \
    expectLatPoint(s, lat(0), OP##Pattern(p0, p1),                             \
                   loopsToBits({{l0, t0}, {l0, t1}}), true);                   \
    expectLatPoint(s, lat(1), p1, loopsToBits({{l0, t1}}), true);              \
  }

FOREVERY_COMMON_DISJ_BINOP(IMPL_MERGER_TEST_OPTIMIZED_DISJ)

#undef IMPL_MERGER_TEST_OPTIMIZED_CONJ

/// Vector multiplication (conjunction) of 2 vectors, i.e.:
///   a(i) = b(i) * c(i)
/// which should form the single lattice point
/// {
///   lat( i_00 i_01 / (sparse_tensor_0 * dense_tensor_1) )
/// }
/// it should be optimized to
/// {
///   lat( i_00 / (sparse_tensor_0 * dense_tensor_1) )
/// }
/// since i_01 is a dense dimension.
#define IMPL_MERGER_TEST_OPTIMIZED_CONJ(OP)                                    \
  TEST_F(MergerTest3T1LD, vector_opted_##OP) {                                 \
    auto e = OP##Expr(t0, t1);                                                 \
    auto p0 = tensorPattern(t0);                                               \
    auto p1 = tensorPattern(t1);                                               \
    auto s = merger.buildLattices(e, l0);                                      \
                                                                               \
    expectNumLatPoints(s, 1);                                                  \
    expectLatPoint(s, lat(0), OP##Pattern(p0, p1),                             \
                   loopsToBits({{l0, t0}, {l0, t1}}));                         \
                                                                               \
    s = merger.optimizeSet(s);                                                 \
    expectNumLatPoints(s, 1);                                                  \
    expectLatPoint(s, lat(0), OP##Pattern(p0, p1), loopsToBits({{l0, t0}}),    \
                   true);                                                      \
  }

FOREVERY_COMMON_CONJ_BINOP(IMPL_MERGER_TEST_OPTIMIZED_CONJ)

#undef IMPL_MERGER_TEST_OPTIMIZED_CONJ

// TODO: mult-dim tests

// restore warning status
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(pop)
#endif