1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
//===--- amdgpu/impl/msgpack.h ------------------------------------ C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef MSGPACK_H
#define MSGPACK_H
#include <functional>
namespace msgpack {
// The message pack format is dynamically typed, schema-less. Format is:
// message: [type][header][payload]
// where type is one byte, header length is a fixed length function of type
// payload is zero to N bytes, with the length encoded in [type][header]
// Scalar fields include boolean, signed integer, float, string etc
// Composite types are sequences of messages
// Array field is [header][element][element]...
// Map field is [header][key][value][key][value]...
// Multibyte integer fields are big endian encoded
// The map key can be any message type
// Maps may contain duplicate keys
// Data is not uniquely encoded, e.g. integer "8" may be stored as one byte or
// in as many as nine, as signed or unsigned. Implementation defined.
// Similarly "foo" may embed the length in the type field or in multiple bytes
// This parser is structured as an iterator over a sequence of bytes.
// It calls a user provided function on each message in order to extract fields
// The default implementation for each scalar type is to do nothing. For map or
// arrays, the default implementation returns just after that message to support
// iterating to the next message, but otherwise has no effect.
struct byte_range {
const unsigned char *start;
const unsigned char *end;
};
const unsigned char *skip_next_message(const unsigned char *start,
const unsigned char *end);
template <typename Derived> class functors_defaults {
public:
void cb_string(size_t N, const unsigned char *str) {
derived().handle_string(N, str);
}
void cb_boolean(bool x) { derived().handle_boolean(x); }
void cb_signed(int64_t x) { derived().handle_signed(x); }
void cb_unsigned(uint64_t x) { derived().handle_unsigned(x); }
void cb_array_elements(byte_range bytes) {
derived().handle_array_elements(bytes);
}
void cb_map_elements(byte_range key, byte_range value) {
derived().handle_map_elements(key, value);
}
const unsigned char *cb_array(uint64_t N, byte_range bytes) {
return derived().handle_array(N, bytes);
}
const unsigned char *cb_map(uint64_t N, byte_range bytes) {
return derived().handle_map(N, bytes);
}
private:
Derived &derived() { return *static_cast<Derived *>(this); }
// Default implementations for scalar ops are no-ops
void handle_string(size_t, const unsigned char *) {}
void handle_boolean(bool) {}
void handle_signed(int64_t) {}
void handle_unsigned(uint64_t) {}
void handle_array_elements(byte_range) {}
void handle_map_elements(byte_range, byte_range) {}
// Default implementation for sequences is to skip over the messages
const unsigned char *handle_array(uint64_t N, byte_range bytes) {
for (uint64_t i = 0; i < N; i++) {
const unsigned char *next = skip_next_message(bytes.start, bytes.end);
if (!next) {
return nullptr;
}
cb_array_elements(bytes);
bytes.start = next;
}
return bytes.start;
}
const unsigned char *handle_map(uint64_t N, byte_range bytes) {
for (uint64_t i = 0; i < N; i++) {
const unsigned char *start_key = bytes.start;
const unsigned char *end_key = skip_next_message(start_key, bytes.end);
if (!end_key) {
return nullptr;
}
const unsigned char *start_value = end_key;
const unsigned char *end_value =
skip_next_message(start_value, bytes.end);
if (!end_value) {
return nullptr;
}
cb_map_elements({start_key, end_key}, {start_value, end_value});
bytes.start = end_value;
}
return bytes.start;
}
};
typedef enum : uint8_t {
#define X(NAME, WIDTH, PAYLOAD, LOWER, UPPER) NAME,
#include "msgpack.def"
#undef X
} type;
[[noreturn]] void internal_error();
type parse_type(unsigned char x);
unsigned bytes_used_fixed(type ty);
typedef uint64_t (*payload_info_t)(const unsigned char *);
payload_info_t payload_info(msgpack::type ty);
template <typename T, typename R> R bitcast(T x);
template <typename F, msgpack::type ty>
const unsigned char *handle_msgpack_given_type(byte_range bytes, F f) {
const unsigned char *start = bytes.start;
const unsigned char *end = bytes.end;
const uint64_t available = end - start;
assert(available != 0);
assert(ty == parse_type(*start));
const uint64_t bytes_used = bytes_used_fixed(ty);
if (available < bytes_used) {
return 0;
}
const uint64_t available_post_header = available - bytes_used;
const payload_info_t info = payload_info(ty);
const uint64_t N = info(start);
switch (ty) {
case msgpack::t:
case msgpack::f: {
// t is 0b11000010, f is 0b11000011, masked with 0x1
f.cb_boolean(N);
return start + bytes_used;
}
case msgpack::posfixint:
case msgpack::uint8:
case msgpack::uint16:
case msgpack::uint32:
case msgpack::uint64: {
f.cb_unsigned(N);
return start + bytes_used;
}
case msgpack::negfixint:
case msgpack::int8:
case msgpack::int16:
case msgpack::int32:
case msgpack::int64: {
f.cb_signed(bitcast<uint64_t, int64_t>(N));
return start + bytes_used;
}
case msgpack::fixstr:
case msgpack::str8:
case msgpack::str16:
case msgpack::str32: {
if (available_post_header < N) {
return 0;
} else {
f.cb_string(N, start + bytes_used);
return start + bytes_used + N;
}
}
case msgpack::fixarray:
case msgpack::array16:
case msgpack::array32: {
return f.cb_array(N, {start + bytes_used, end});
}
case msgpack::fixmap:
case msgpack::map16:
case msgpack::map32: {
return f.cb_map(N, {start + bytes_used, end});
}
case msgpack::nil:
case msgpack::bin8:
case msgpack::bin16:
case msgpack::bin32:
case msgpack::float32:
case msgpack::float64:
case msgpack::ext8:
case msgpack::ext16:
case msgpack::ext32:
case msgpack::fixext1:
case msgpack::fixext2:
case msgpack::fixext4:
case msgpack::fixext8:
case msgpack::fixext16:
case msgpack::never_used: {
if (available_post_header < N) {
return 0;
}
return start + bytes_used + N;
}
}
internal_error();
}
template <typename F>
const unsigned char *handle_msgpack(byte_range bytes, F f) {
const unsigned char *start = bytes.start;
const unsigned char *end = bytes.end;
const uint64_t available = end - start;
if (available == 0) {
return 0;
}
const type ty = parse_type(*start);
switch (ty) {
#define X(NAME, WIDTH, PAYLOAD, LOWER, UPPER) \
case msgpack::NAME: \
return handle_msgpack_given_type<F, msgpack::NAME>(bytes, f);
#include "msgpack.def"
#undef X
}
internal_error();
}
bool message_is_string(byte_range bytes, const char *str);
template <typename C> void foronly_string(byte_range bytes, C callback) {
struct inner : functors_defaults<inner> {
inner(C &cb) : cb(cb) {}
C &cb;
void handle_string(size_t N, const unsigned char *str) { cb(N, str); }
};
handle_msgpack<inner>(bytes, {callback});
}
template <typename C> void foronly_unsigned(byte_range bytes, C callback) {
struct inner : functors_defaults<inner> {
inner(C &cb) : cb(cb) {}
C &cb;
void handle_unsigned(uint64_t x) { cb(x); }
};
handle_msgpack<inner>(bytes, {callback});
}
template <typename C> void foreach_array(byte_range bytes, C callback) {
struct inner : functors_defaults<inner> {
inner(C &cb) : cb(cb) {}
C &cb;
void handle_array_elements(byte_range element) { cb(element); }
};
handle_msgpack<inner>(bytes, {callback});
}
template <typename C> void foreach_map(byte_range bytes, C callback) {
struct inner : functors_defaults<inner> {
inner(C &cb) : cb(cb) {}
C &cb;
void handle_map_elements(byte_range key, byte_range value) {
cb(key, value);
}
};
handle_msgpack<inner>(bytes, {callback});
}
// Crude approximation to json
void dump(byte_range);
} // namespace msgpack
#endif
|