1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
// RUN: %libomp-cxx-compile-and-run
// RUN: %libomp-cxx-compile -DFLG=1 && %libomp-run
// GCC-5 is needed for OpenMP 4.0 support (taskgroup)
// XFAIL: gcc-4
#include <cstdio>
#include <cmath>
#include <cassert>
#include <omp.h>
// Total number of loop iterations, should be multiple of T for this test
#define N 10000
// Flag to request lazy (1) or eager (0) allocation of reduction objects
#ifndef FLG
#define FLG 0
#endif
/*
// initial user's code that corresponds to pseudo code of the test
#pragma omp taskgroup task_reduction(+:i,j) task_reduction(*:x)
{
for( int l = 0; l < N; ++l ) {
#pragma omp task firstprivate(l) in_reduction(+:i) in_reduction(*:x)
{
i += l;
if( l%2 )
x *= 1.0 / (l + 1);
else
x *= (l + 1);
}
}
#pragma omp taskgroup task_reduction(-:i,k) task_reduction(+:y)
{
for( int l = 0; l < N; ++l ) {
#pragma omp task firstprivate(l) in_reduction(+:j,y) \
in_reduction(*:x) in_reduction(-:k)
{
j += l;
k -= l;
y += (double)l;
if( l%2 )
x *= 1.0 / (l + 1);
else
x *= (l + 1);
}
#pragma omp task firstprivate(l) in_reduction(+:y) in_reduction(-:i,k)
{
i -= l;
k -= l;
y += (double)l;
}
#pragma omp task firstprivate(l) in_reduction(+:j) in_reduction(*:x)
{
j += l;
if( l%2 )
x *= 1.0 / (l + 1);
else
x *= (l + 1);
}
}
} // inner reduction
for( int l = 0; l < N; ++l ) {
#pragma omp task firstprivate(l) in_reduction(+:j)
j += l;
}
} // outer reduction
*/
//------------------------------------------------
// OpenMP runtime library routines
#ifdef __cplusplus
extern "C" {
#endif
extern void* __kmpc_task_reduction_get_th_data(int gtid, void* tg, void* item);
extern void* __kmpc_task_reduction_init(int gtid, int num, void* data);
extern int __kmpc_global_thread_num(void*);
#ifdef __cplusplus
}
#endif
//------------------------------------------------
// Compiler-generated code
typedef struct _task_red_item {
void *shar; // shared reduction item
size_t size; // size of data item
void *f_init; // data initialization routine
void *f_fini; // data finalization routine
void *f_comb; // data combiner routine
unsigned flags;
} _task_red_item_t;
// int:+ no need in init/fini callbacks, valid for subtraction
void __red_int_add_comb(void *lhs, void *rhs) // combiner
{ *(int*)lhs += *(int*)rhs; }
// long long:+ no need in init/fini callbacks, valid for subtraction
void __red_llong_add_comb(void *lhs, void *rhs) // combiner
{ *(long long*)lhs += *(long long*)rhs; }
// double:* no need in fini callback
void __red_dbl_mul_init(void *data) // initializer
{ *(double*)data = 1.0; }
void __red_dbl_mul_comb(void *lhs, void *rhs) // combiner
{ *(double*)lhs *= *(double*)rhs; }
// double:+ no need in init/fini callbacks
void __red_dbl_add_comb(void *lhs, void *rhs) // combiner
{ *(double*)lhs += *(double*)rhs; }
// ==============================
void calc_serial(int *pi, long long *pj, double *px, long long *pk, double *py)
{
for( int l = 0; l < N; ++l ) {
*pi += l;
if( l%2 )
*px *= 1.0 / (l + 1);
else
*px *= (l + 1);
}
for( int l = 0; l < N; ++l ) {
*pj += l;
*pk -= l;
*py += (double)l;
if( l%2 )
*px *= 1.0 / (l + 1);
else
*px *= (l + 1);
*pi -= l;
*pk -= l;
*py += (double)l;
*pj += l;
if( l%2 )
*px *= 1.0 / (l + 1);
else
*px *= (l + 1);
}
for( int l = 0; l < N; ++l ) {
*pj += l;
}
}
//------------------------------------------------
// Test case
int main()
{
int nthreads = omp_get_max_threads();
int err = 0;
void** ptrs = (void**)malloc(nthreads*sizeof(void*));
// user's code ======================================
// variables for serial calculations:
int is = 3;
long long js = -9999999;
double xs = 99999.0;
long long ks = 99999999;
double ys = -99999999.0;
// variables for parallel calculations:
int ip = 3;
long long jp = -9999999;
double xp = 99999.0;
long long kp = 99999999;
double yp = -99999999.0;
calc_serial(&is, &js, &xs, &ks, &ys);
// ==================================================
for (int i = 0; i < nthreads; ++i)
ptrs[i] = NULL;
#pragma omp parallel
{
#pragma omp single nowait
{
// outer taskgroup reduces (i,j,x)
#pragma omp taskgroup // task_reduction(+:i,j) task_reduction(*:x)
{
_task_red_item_t red_data[3];
red_data[0].shar = &ip;
red_data[0].size = sizeof(ip);
red_data[0].f_init = NULL; // RTL will zero thread-specific objects
red_data[0].f_fini = NULL; // no destructors needed
red_data[0].f_comb = (void*)&__red_int_add_comb;
red_data[0].flags = FLG;
red_data[1].shar = &jp;
red_data[1].size = sizeof(jp);
red_data[1].f_init = NULL; // RTL will zero thread-specific objects
red_data[1].f_fini = NULL; // no destructors needed
red_data[1].f_comb = (void*)&__red_llong_add_comb;
red_data[1].flags = FLG;
red_data[2].shar = &xp;
red_data[2].size = sizeof(xp);
red_data[2].f_init = (void*)&__red_dbl_mul_init;
red_data[2].f_fini = NULL; // no destructors needed
red_data[2].f_comb = (void*)&__red_dbl_mul_comb;
red_data[2].flags = FLG;
int gtid = __kmpc_global_thread_num(NULL);
void* tg1 = __kmpc_task_reduction_init(gtid, 3, red_data);
for( int l = 0; l < N; l += 2 ) {
// 2 iterations per task to get correct x value; actually any even
// number of iters per task will work, otherwise x looses precision
#pragma omp task firstprivate(l) //in_reduction(+:i) in_reduction(*:x)
{
int gtid = __kmpc_global_thread_num(NULL);
int *p_ip = (int*)__kmpc_task_reduction_get_th_data(gtid, tg1, &ip);
double *p_xp = (double*)__kmpc_task_reduction_get_th_data(
gtid, tg1, &xp);
if (!ptrs[gtid]) ptrs[gtid] = p_xp;
// user's pseudo-code ==============================
*p_ip += l;
*p_xp *= (l + 1);
*p_ip += l + 1;
*p_xp *= 1.0 / (l + 2);
// ==================================================
}
}
// inner taskgroup reduces (i,k,y), i is same object as in outer one
#pragma omp taskgroup // task_reduction(-:i,k) task_reduction(+:y)
{
_task_red_item_t red_data[3];
red_data[0].shar = &ip;
red_data[0].size = sizeof(ip);
red_data[0].f_init = NULL; // RTL will zero thread-specific objects
red_data[0].f_fini = NULL; // no destructors needed
red_data[0].f_comb = (void*)&__red_int_add_comb;
red_data[0].flags = FLG;
red_data[1].shar = &kp;
red_data[1].size = sizeof(kp);
red_data[1].f_init = NULL; // RTL will zero thread-specific objects
red_data[1].f_fini = NULL; // no destructors needed
red_data[1].f_comb = (void*)&__red_llong_add_comb; // same for + and -
red_data[1].flags = FLG;
red_data[2].shar = &yp;
red_data[2].size = sizeof(yp);
red_data[2].f_init = NULL; // RTL will zero thread-specific objects
red_data[2].f_fini = NULL; // no destructors needed
red_data[2].f_comb = (void*)&__red_dbl_add_comb;
red_data[2].flags = FLG;
int gtid = __kmpc_global_thread_num(NULL);
void* tg2 = __kmpc_task_reduction_init(gtid, 3, red_data);
for( int l = 0; l < N; l += 2 ) {
#pragma omp task firstprivate(l)
// in_reduction(+:j,y) in_reduction(*:x) in_reduction(-:k)
{
int gtid = __kmpc_global_thread_num(NULL);
long long *p_jp = (long long*)__kmpc_task_reduction_get_th_data(
gtid, tg1, &jp);
long long *p_kp = (long long*)__kmpc_task_reduction_get_th_data(
gtid, tg2, &kp);
double *p_xp = (double*)__kmpc_task_reduction_get_th_data(
gtid, tg1, &xp);
double *p_yp = (double*)__kmpc_task_reduction_get_th_data(
gtid, tg2, &yp);
// user's pseudo-code ==============================
*p_jp += l;
*p_kp -= l;
*p_yp += (double)l;
*p_xp *= (l + 1);
*p_jp += l + 1;
*p_kp -= l + 1;
*p_yp += (double)(l + 1);
*p_xp *= 1.0 / (l + 2);
// =================================================
{
// the following code is here just to check __kmpc_task_reduction_get_th_data:
int tid = omp_get_thread_num();
void *addr1;
void *addr2;
addr1 = __kmpc_task_reduction_get_th_data(gtid, tg1, &xp); // from shared
addr2 = __kmpc_task_reduction_get_th_data(gtid, tg1, addr1); // from private
if (addr1 != addr2) {
#pragma omp atomic
++err;
printf("Wrong thread-specific addresses %d s:%p p:%p\n", tid, addr1, addr2);
}
// from neighbour w/o taskgroup (should start lookup from current tg2)
if (tid > 0) {
if (ptrs[tid-1]) {
addr2 = __kmpc_task_reduction_get_th_data(gtid, NULL, ptrs[tid-1]);
if (addr1 != addr2) {
#pragma omp atomic
++err;
printf("Wrong thread-specific addresses %d s:%p n:%p\n",
tid, addr1, addr2);
}
}
} else {
if (ptrs[nthreads-1]) {
addr2 = __kmpc_task_reduction_get_th_data(gtid, NULL, ptrs[nthreads-1]);
if (addr1 != addr2) {
#pragma omp atomic
++err;
printf("Wrong thread-specific addresses %d s:%p n:%p\n",
tid, addr1, addr2);
}
}
}
// ----------------------------------------------
}
}
#pragma omp task firstprivate(l)
// in_reduction(+:y) in_reduction(-:i,k)
{
int gtid = __kmpc_global_thread_num(NULL);
int *p_ip = (int*)__kmpc_task_reduction_get_th_data(
gtid, tg2, &ip);
long long *p_kp = (long long*)__kmpc_task_reduction_get_th_data(
gtid, tg2, &kp);
double *p_yp = (double*)__kmpc_task_reduction_get_th_data(
gtid, tg2, &yp);
// user's pseudo-code ==============================
*p_ip -= l;
*p_kp -= l;
*p_yp += (double)l;
*p_ip -= l + 1;
*p_kp -= l + 1;
*p_yp += (double)(l + 1);
// =================================================
}
#pragma omp task firstprivate(l)
// in_reduction(+:j) in_reduction(*:x)
{
int gtid = __kmpc_global_thread_num(NULL);
long long *p_jp = (long long*)__kmpc_task_reduction_get_th_data(
gtid, tg1, &jp);
double *p_xp = (double*)__kmpc_task_reduction_get_th_data(
gtid, tg1, &xp);
// user's pseudo-code ==============================
*p_jp += l;
*p_xp *= (l + 1);
*p_jp += l + 1;
*p_xp *= 1.0 / (l + 2);
// =================================================
}
}
} // inner reduction
for( int l = 0; l < N; l += 2 ) {
#pragma omp task firstprivate(l) // in_reduction(+:j)
{
int gtid = __kmpc_global_thread_num(NULL);
long long *p_jp = (long long*)__kmpc_task_reduction_get_th_data(
gtid, tg1, &jp);
// user's pseudo-code ==============================
*p_jp += l;
*p_jp += l + 1;
// =================================================
}
}
} // outer reduction
} // end single
} // end parallel
// check results
#if _DEBUG
printf("reduction flags = %u\n", FLG);
#endif
if (ip == is && jp == js && ks == kp &&
fabs(xp - xs) < 0.01 && fabs(yp - ys) < 0.01)
printf("passed\n");
else
printf("failed,\n ser:(%d %lld %f %lld %f)\n par:(%d %lld %f %lld %f)\n",
is, js, xs, ks, ys,
ip, jp, xp, kp, yp);
return 0;
}
|