1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
#!/usr/bin/env python
import pandas as pd
import numpy as np
import re
import sys
import os
import argparse
import matplotlib
from matplotlib import pyplot as plt
from matplotlib.projections.polar import PolarAxes
from matplotlib.projections import register_projection
"""
Read the stats file produced by the OpenMP runtime
and produce a processed summary
The radar_factory original code was taken from
matplotlib.org/examples/api/radar_chart.html
We added support to handle negative values for radar charts
"""
def radar_factory(num_vars, frame='circle'):
"""Create a radar chart with num_vars axes."""
# calculate evenly-spaced axis angles
theta = 2*np.pi * np.linspace(0, 1-1./num_vars, num_vars)
# rotate theta such that the first axis is at the top
#theta += np.pi/2
def draw_poly_frame(self, x0, y0, r):
# TODO: use transforms to convert (x, y) to (r, theta)
verts = [(r*np.cos(t) + x0, r*np.sin(t) + y0) for t in theta]
return plt.Polygon(verts, closed=True, edgecolor='k')
def draw_circle_frame(self, x0, y0, r):
return plt.Circle((x0, y0), r)
frame_dict = {'polygon': draw_poly_frame, 'circle': draw_circle_frame}
if frame not in frame_dict:
raise ValueError, 'unknown value for `frame`: %s' % frame
class RadarAxes(PolarAxes):
"""
Class for creating a radar chart (a.k.a. a spider or star chart)
http://en.wikipedia.org/wiki/Radar_chart
"""
name = 'radar'
# use 1 line segment to connect specified points
RESOLUTION = 1
# define draw_frame method
draw_frame = frame_dict[frame]
def fill(self, *args, **kwargs):
"""Override fill so that line is closed by default"""
closed = kwargs.pop('closed', True)
return super(RadarAxes, self).fill(closed=closed, *args, **kwargs)
def plot(self, *args, **kwargs):
"""Override plot so that line is closed by default"""
lines = super(RadarAxes, self).plot(*args, **kwargs)
#for line in lines:
# self._close_line(line)
def set_varlabels(self, labels):
self.set_thetagrids(theta * 180/np.pi, labels,fontsize=14)
def _gen_axes_patch(self):
x0, y0 = (0.5, 0.5)
r = 0.5
return self.draw_frame(x0, y0, r)
register_projection(RadarAxes)
return theta
# Code to read the raw stats
def extractSI(s):
"""Convert a measurement with a range suffix into a suitably scaled value"""
du = s.split()
num = float(du[0])
units = du[1] if len(du) == 2 else ' '
# http://physics.nist.gov/cuu/Units/prefixes.html
factor = {'Y': 1e24,
'Z': 1e21,
'E': 1e18,
'P': 1e15,
'T': 1e12,
'G': 1e9,
'M': 1e6,
'k': 1e3,
' ': 1 ,
'm': -1e3, # Yes, I do mean that, see below for the explanation.
'u': -1e6,
'n': -1e9,
'p': -1e12,
'f': -1e15,
'a': -1e18,
'z': -1e21,
'y': -1e24}[units[0]]
# Minor trickery here is an attempt to preserve accuracy by using a single
# divide, rather than multiplying by 1/x, which introduces two roundings
# since 1/10 is not representable perfectly in IEEE floating point. (Not
# that this really matters, other than for cleanliness, since we're likely
# reading numbers with at most five decimal digits of precision).
return num*factor if factor > 0 else num/-factor
def readData(f):
line = f.readline()
fieldnames = [x.strip() for x in line.split(',')]
line = f.readline().strip()
data = []
while line != "":
if line[0] != '#':
fields = line.split(',')
data.append ((fields[0].strip(), [extractSI(v) for v in fields[1:]]))
line = f.readline().strip()
# Man, working out this next incantation out was non-trivial!
# They really want you to be snarfing data in csv or some other
# format they understand!
res = pd.DataFrame.from_items(data, columns=fieldnames[1:], orient='index')
return res
def readTimers(f):
"""Skip lines with leading #"""
line = f.readline()
while line[0] == '#':
line = f.readline()
line = line.strip()
if line == "Statistics on exit\n" or "Aggregate for all threads\n":
line = f.readline()
return readData(f)
def readCounters(f):
"""This can be just the same!"""
return readData(f)
def readFile(fname):
"""Read the statistics from the file. Return a dict with keys "timers", "counters" """
res = {}
try:
with open(fname) as f:
res["timers"] = readTimers(f)
res["counters"] = readCounters(f)
return res
except (OSError, IOError):
print "Cannot open " + fname
return None
def usefulValues(l):
"""I.e. values which are neither null nor zero"""
return [p and q for (p,q) in zip (pd.notnull(l), l != 0.0)]
def uselessValues(l):
"""I.e. values which are null or zero"""
return [not p for p in usefulValues(l)]
interestingStats = ("counters", "timers")
statProperties = {"counters" : ("Count", "Counter Statistics"),
"timers" : ("Time (ticks)", "Timer Statistics")
}
def drawChart(data, kind, filebase):
"""Draw a summary bar chart for the requested data frame into the specified file"""
data["Mean"].plot(kind="bar", logy=True, grid=True, colormap="GnBu",
yerr=data["SD"], ecolor="black")
plt.xlabel("OMP Constructs")
plt.ylabel(statProperties[kind][0])
plt.title (statProperties[kind][1])
plt.tight_layout()
plt.savefig(filebase+"_"+kind)
def normalizeValues(data, countField, factor):
"""Normalize values into a rate by dividing them all by the given factor"""
data[[k for k in data.keys() if k != countField]] /= factor
def setRadarFigure(titles):
"""Set the attributes for the radar plots"""
fig = plt.figure(figsize=(9,9))
rect = [0.1, 0.1, 0.8, 0.8]
labels = [0.2, 0.4, 0.6, 0.8, 1, 2, 3, 4, 5, 10]
matplotlib.rcParams.update({'font.size':13})
theta = radar_factory(len(titles))
ax = fig.add_axes(rect, projection='radar')
ax.set_rgrids(labels)
ax.set_varlabels(titles)
ax.text(theta[2], 1, "Linear->Log", horizontalalignment='center', color='green', fontsize=18)
return {'ax':ax, 'theta':theta}
def drawRadarChart(data, kind, filebase, params, color):
"""Draw the radar plots"""
tmp_lin = data * 0
tmp_log = data * 0
for key in data.keys():
if data[key] >= 1:
tmp_log[key] = np.log10(data[key])
else:
tmp_lin[key] = (data[key])
params['ax'].plot(params['theta'], tmp_log, color='b', label=filebase+"_"+kind+"_log")
params['ax'].plot(params['theta'], tmp_lin, color='r', label=filebase+"_"+kind+"_linear")
params['ax'].legend(loc='best', bbox_to_anchor=(1.4,1.2))
params['ax'].set_rlim((0, np.ceil(max(tmp_log))))
def multiAppBarChartSettings(ax, plt, index, width, n, tmp, s):
ax.set_yscale('log')
ax.legend()
ax.set_xticks(index + width * n / 2)
ax.set_xticklabels(tmp[s]['Total'].keys(), rotation=50, horizontalalignment='right')
plt.xlabel("OMP Constructs")
plt.ylabel(statProperties[s][0])
plt.title(statProperties[s][1])
plt.tight_layout()
def derivedTimerStats(data):
stats = {}
for key in data.keys():
if key == 'OMP_worker_thread_life':
totalRuntime = data['OMP_worker_thread_life']
elif key in ('FOR_static_iterations', 'OMP_PARALLEL_args',
'OMP_set_numthreads', 'FOR_dynamic_iterations'):
break
else:
stats[key] = 100 * data[key] / totalRuntime
return stats
def compPie(data):
compKeys = {}
nonCompKeys = {}
for key in data.keys():
if key in ('OMP_critical', 'OMP_single', 'OMP_serial',
'OMP_parallel', 'OMP_master', 'OMP_task_immediate',
'OMP_task_taskwait', 'OMP_task_taskyield', 'OMP_task_taskgroup',
'OMP_task_join_bar', 'OMP_task_plain_bar', 'OMP_task_taskyield'):
compKeys[key] = data[key]
else:
nonCompKeys[key] = data[key]
print "comp keys:", compKeys, "\n\n non comp keys:", nonCompKeys
return [compKeys, nonCompKeys]
def drawMainPie(data, filebase, colors):
sizes = [sum(data[0].values()), sum(data[1].values())]
explode = [0,0]
labels = ["Compute - " + "%.2f" % sizes[0], "Non Compute - " + "%.2f" % sizes[1]]
patches = plt.pie(sizes, explode, colors=colors, startangle=90)
plt.title("Time Division")
plt.axis('equal')
plt.legend(patches[0], labels, loc='best', bbox_to_anchor=(-0.1,1), fontsize=16)
plt.savefig(filebase+"_main_pie", bbox_inches='tight')
def drawSubPie(data, tag, filebase, colors):
explode = []
labels = data.keys()
sizes = data.values()
total = sum(sizes)
percent = []
for i in range(len(sizes)):
explode.append(0)
percent.append(100 * sizes[i] / total)
labels[i] = labels[i] + " - %.2f" % percent[i]
patches = plt.pie(sizes, explode=explode, colors=colors, startangle=90)
plt.title(tag+"(Percentage of Total:"+" %.2f" % (sum(data.values()))+")")
plt.tight_layout()
plt.axis('equal')
plt.legend(patches[0], labels, loc='best', bbox_to_anchor=(-0.1,1), fontsize=16)
plt.savefig(filebase+"_"+tag, bbox_inches='tight')
def main():
parser = argparse.ArgumentParser(description='''This script takes a list
of files containing each of which contain output from a stats-gathering
enabled OpenMP runtime library. Each stats file is read, parsed, and
used to produce a summary of the statistics''')
parser.add_argument('files', nargs='+',
help='files to parse which contain stats-gathering output')
command_args = parser.parse_args()
colors = ['orange', 'b', 'r', 'yellowgreen', 'lightsage', 'lightpink',
'green', 'purple', 'yellow', 'cyan', 'mediumturquoise',
'olive']
stats = {}
matplotlib.rcParams.update({'font.size':22})
for s in interestingStats:
fig, ax = plt.subplots()
width = 0.45
n = 0
index = 0
for f in command_args.files:
filebase = os.path.splitext(f)[0]
tmp = readFile(f)
data = tmp[s]['Total']
"""preventing repetition by removing rows similar to Total_OMP_work
as Total_OMP_work['Total'] is same as OMP_work['Total']"""
if s == 'counters':
elapsedTime = tmp["timers"]["Mean"]["OMP_worker_thread_life"]
normalizeValues(tmp["counters"], "SampleCount",
elapsedTime / 1.e9)
"""Plotting radar charts"""
params = setRadarFigure(data.keys())
chartType = "radar"
drawRadarChart(data, s, filebase, params, colors[n])
"""radar Charts finish here"""
plt.savefig(filebase+"_"+s+"_"+chartType, bbox_inches='tight')
elif s == 'timers':
print "overheads in "+filebase
numThreads = tmp[s]['SampleCount']['Total_OMP_parallel']
for key in data.keys():
if key[0:5] == 'Total':
del data[key]
stats[filebase] = derivedTimerStats(data)
dataSubSet = compPie(stats[filebase])
drawMainPie(dataSubSet, filebase, colors)
plt.figure(0)
drawSubPie(dataSubSet[0], "Computational Time", filebase, colors)
plt.figure(1)
drawSubPie(dataSubSet[1], "Non Computational Time", filebase, colors)
with open('derivedStats_{}.csv'.format(filebase), 'w') as f:
f.write('================={}====================\n'.format(filebase))
f.write(pd.DataFrame(stats[filebase].items()).to_csv()+'\n')
n += 1
plt.close()
if __name__ == "__main__":
main()
|