1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
|
//===--- ByteCodeExprGen.cpp - Code generator for expressions ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ByteCodeExprGen.h"
#include "ByteCodeEmitter.h"
#include "ByteCodeGenError.h"
#include "ByteCodeStmtGen.h"
#include "Context.h"
#include "Function.h"
#include "PrimType.h"
#include "Program.h"
#include "State.h"
using namespace clang;
using namespace clang::interp;
using APSInt = llvm::APSInt;
namespace clang {
namespace interp {
/// Scope used to handle temporaries in toplevel variable declarations.
template <class Emitter> class DeclScope final : public LocalScope<Emitter> {
public:
DeclScope(ByteCodeExprGen<Emitter> *Ctx, const VarDecl *VD)
: LocalScope<Emitter>(Ctx), Scope(Ctx->P, VD) {}
void addExtended(const Scope::Local &Local) override {
return this->addLocal(Local);
}
private:
Program::DeclScope Scope;
};
/// Scope used to handle initialization methods.
template <class Emitter> class OptionScope {
public:
/// Root constructor, compiling or discarding primitives.
OptionScope(ByteCodeExprGen<Emitter> *Ctx, bool NewDiscardResult)
: Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult) {
Ctx->DiscardResult = NewDiscardResult;
}
~OptionScope() { Ctx->DiscardResult = OldDiscardResult; }
private:
/// Parent context.
ByteCodeExprGen<Emitter> *Ctx;
/// Old discard flag to restore.
bool OldDiscardResult;
};
} // namespace interp
} // namespace clang
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCastExpr(const CastExpr *CE) {
auto *SubExpr = CE->getSubExpr();
switch (CE->getCastKind()) {
case CK_LValueToRValue: {
return dereference(
CE->getSubExpr(), DerefKind::Read,
[](PrimType) {
// Value loaded - nothing to do here.
return true;
},
[this, CE](PrimType T) {
// Pointer on stack - dereference it.
if (!this->emitLoadPop(T, CE))
return false;
return DiscardResult ? this->emitPop(T, CE) : true;
});
}
case CK_UncheckedDerivedToBase:
case CK_DerivedToBase: {
if (!this->visit(SubExpr))
return false;
const CXXRecordDecl *FromDecl = getRecordDecl(SubExpr);
assert(FromDecl);
const CXXRecordDecl *ToDecl = getRecordDecl(CE);
assert(ToDecl);
const Record *R = getRecord(FromDecl);
const Record::Base *ToBase = R->getBase(ToDecl);
assert(ToBase);
return this->emitGetPtrBase(ToBase->Offset, CE);
}
case CK_ArrayToPointerDecay:
case CK_AtomicToNonAtomic:
case CK_ConstructorConversion:
case CK_FunctionToPointerDecay:
case CK_NonAtomicToAtomic:
case CK_NoOp:
case CK_UserDefinedConversion:
case CK_NullToPointer:
return this->visit(SubExpr);
case CK_IntegralToBoolean:
case CK_IntegralCast: {
std::optional<PrimType> FromT = classify(SubExpr->getType());
std::optional<PrimType> ToT = classify(CE->getType());
if (!FromT || !ToT)
return false;
if (!this->visit(SubExpr))
return false;
// TODO: Emit this only if FromT != ToT.
return this->emitCast(*FromT, *ToT, CE);
}
case CK_ToVoid:
return discard(SubExpr);
default:
assert(false && "Cast not implemented");
}
llvm_unreachable("Unhandled clang::CastKind enum");
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) {
if (DiscardResult)
return true;
return this->emitConst(LE->getValue(), LE);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitParenExpr(const ParenExpr *PE) {
return this->visit(PE->getSubExpr());
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) {
const Expr *LHS = BO->getLHS();
const Expr *RHS = BO->getRHS();
// Deal with operations which have composite or void types.
switch (BO->getOpcode()) {
case BO_Comma:
if (!discard(LHS))
return false;
if (!this->visit(RHS))
return false;
return true;
default:
break;
}
// Typecheck the args.
std::optional<PrimType> LT = classify(LHS->getType());
std::optional<PrimType> RT = classify(RHS->getType());
std::optional<PrimType> T = classify(BO->getType());
if (!LT || !RT || !T) {
return this->bail(BO);
}
auto Discard = [this, T, BO](bool Result) {
if (!Result)
return false;
return DiscardResult ? this->emitPop(*T, BO) : true;
};
// Pointer arithmetic special case.
if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) {
if (*T == PT_Ptr || (*LT == PT_Ptr && *RT == PT_Ptr))
return this->VisitPointerArithBinOp(BO);
}
if (!visit(LHS) || !visit(RHS))
return false;
switch (BO->getOpcode()) {
case BO_EQ:
return Discard(this->emitEQ(*LT, BO));
case BO_NE:
return Discard(this->emitNE(*LT, BO));
case BO_LT:
return Discard(this->emitLT(*LT, BO));
case BO_LE:
return Discard(this->emitLE(*LT, BO));
case BO_GT:
return Discard(this->emitGT(*LT, BO));
case BO_GE:
return Discard(this->emitGE(*LT, BO));
case BO_Sub:
return Discard(this->emitSub(*T, BO));
case BO_Add:
return Discard(this->emitAdd(*T, BO));
case BO_Mul:
return Discard(this->emitMul(*T, BO));
case BO_Rem:
return Discard(this->emitRem(*T, BO));
case BO_Div:
return Discard(this->emitDiv(*T, BO));
case BO_Assign:
if (DiscardResult)
return this->emitStorePop(*T, BO);
return this->emitStore(*T, BO);
case BO_And:
return Discard(this->emitBitAnd(*T, BO));
case BO_Or:
return Discard(this->emitBitOr(*T, BO));
case BO_Shl:
return Discard(this->emitShl(*LT, *RT, BO));
case BO_Shr:
return Discard(this->emitShr(*LT, *RT, BO));
case BO_Xor:
return Discard(this->emitBitXor(*T, BO));
case BO_LAnd:
case BO_LOr:
default:
return this->bail(BO);
}
llvm_unreachable("Unhandled binary op");
}
/// Perform addition/subtraction of a pointer and an integer or
/// subtraction of two pointers.
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) {
BinaryOperatorKind Op = E->getOpcode();
const Expr *LHS = E->getLHS();
const Expr *RHS = E->getRHS();
if ((Op != BO_Add && Op != BO_Sub) ||
(!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType()))
return false;
std::optional<PrimType> LT = classify(LHS);
std::optional<PrimType> RT = classify(RHS);
if (!LT || !RT)
return false;
if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) {
if (Op != BO_Sub)
return false;
assert(E->getType()->isIntegerType());
if (!visit(RHS) || !visit(LHS))
return false;
return this->emitSubPtr(classifyPrim(E->getType()), E);
}
PrimType OffsetType;
if (LHS->getType()->isIntegerType()) {
if (!visit(RHS) || !visit(LHS))
return false;
OffsetType = *LT;
} else if (RHS->getType()->isIntegerType()) {
if (!visit(LHS) || !visit(RHS))
return false;
OffsetType = *RT;
} else {
return false;
}
if (Op == BO_Add)
return this->emitAddOffset(OffsetType, E);
else if (Op == BO_Sub)
return this->emitSubOffset(OffsetType, E);
return this->bail(E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
if (std::optional<PrimType> T = classify(E))
return this->emitZero(*T, E);
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitArraySubscriptExpr(
const ArraySubscriptExpr *E) {
const Expr *Base = E->getBase();
const Expr *Index = E->getIdx();
PrimType IndexT = classifyPrim(Index->getType());
// Take pointer of LHS, add offset from RHS, narrow result.
// What's left on the stack after this is a pointer.
if (!this->visit(Base))
return false;
if (!this->visit(Index))
return false;
if (!this->emitAddOffset(IndexT, E))
return false;
if (!this->emitNarrowPtr(E))
return false;
if (DiscardResult)
return this->emitPopPtr(E);
return true;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitInitListExpr(const InitListExpr *E) {
for (const Expr *Init : E->inits()) {
if (!this->visit(Init))
return false;
}
return true;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitSubstNonTypeTemplateParmExpr(
const SubstNonTypeTemplateParmExpr *E) {
return this->visit(E->getReplacement());
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitConstantExpr(const ConstantExpr *E) {
// TODO: Check if the ConstantExpr already has a value set and if so,
// use that instead of evaluating it again.
return this->visit(E->getSubExpr());
}
static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx,
UnaryExprOrTypeTrait Kind) {
bool AlignOfReturnsPreferred =
ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
// C++ [expr.alignof]p3:
// When alignof is applied to a reference type, the result is the
// alignment of the referenced type.
if (const auto *Ref = T->getAs<ReferenceType>())
T = Ref->getPointeeType();
// __alignof is defined to return the preferred alignment.
// Before 8, clang returned the preferred alignment for alignof and
// _Alignof as well.
if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T));
return ASTCtx.getTypeAlignInChars(T);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitUnaryExprOrTypeTraitExpr(
const UnaryExprOrTypeTraitExpr *E) {
UnaryExprOrTypeTrait Kind = E->getKind();
ASTContext &ASTCtx = Ctx.getASTContext();
if (Kind == UETT_SizeOf) {
QualType ArgType = E->getTypeOfArgument();
CharUnits Size;
if (ArgType->isVoidType() || ArgType->isFunctionType())
Size = CharUnits::One();
else {
if (ArgType->isDependentType() || !ArgType->isConstantSizeType())
return false;
Size = ASTCtx.getTypeSizeInChars(ArgType);
}
return this->emitConst(Size.getQuantity(), E);
}
if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) {
CharUnits Size;
if (E->isArgumentType()) {
QualType ArgType = E->getTypeOfArgument();
Size = AlignOfType(ArgType, ASTCtx, Kind);
} else {
// Argument is an expression, not a type.
const Expr *Arg = E->getArgumentExpr()->IgnoreParens();
// The kinds of expressions that we have special-case logic here for
// should be kept up to date with the special checks for those
// expressions in Sema.
// alignof decl is always accepted, even if it doesn't make sense: we
// default to 1 in those cases.
if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg))
Size = ASTCtx.getDeclAlign(DRE->getDecl(),
/*RefAsPointee*/ true);
else if (const auto *ME = dyn_cast<MemberExpr>(Arg))
Size = ASTCtx.getDeclAlign(ME->getMemberDecl(),
/*RefAsPointee*/ true);
else
Size = AlignOfType(Arg->getType(), ASTCtx, Kind);
}
return this->emitConst(Size.getQuantity(), E);
}
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitMemberExpr(const MemberExpr *E) {
if (DiscardResult)
return true;
// 'Base.Member'
const Expr *Base = E->getBase();
const ValueDecl *Member = E->getMemberDecl();
if (!this->visit(Base))
return false;
// Base above gives us a pointer on the stack.
// TODO: Implement non-FieldDecl members.
if (const auto *FD = dyn_cast<FieldDecl>(Member)) {
const RecordDecl *RD = FD->getParent();
const Record *R = getRecord(RD);
const Record::Field *F = R->getField(FD);
// Leave a pointer to the field on the stack.
if (F->Decl->getType()->isReferenceType())
return this->emitGetFieldPop(PT_Ptr, F->Offset, E);
return this->emitGetPtrField(F->Offset, E);
}
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitArrayInitIndexExpr(
const ArrayInitIndexExpr *E) {
// ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated
// stand-alone, e.g. via EvaluateAsInt().
if (!ArrayIndex)
return false;
return this->emitConst(*ArrayIndex, E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
return this->visit(E->getSourceExpr());
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitAbstractConditionalOperator(
const AbstractConditionalOperator *E) {
const Expr *Condition = E->getCond();
const Expr *TrueExpr = E->getTrueExpr();
const Expr *FalseExpr = E->getFalseExpr();
LabelTy LabelEnd = this->getLabel(); // Label after the operator.
LabelTy LabelFalse = this->getLabel(); // Label for the false expr.
if (!this->visit(Condition))
return false;
if (!this->jumpFalse(LabelFalse))
return false;
if (!this->visit(TrueExpr))
return false;
if (!this->jump(LabelEnd))
return false;
this->emitLabel(LabelFalse);
if (!this->visit(FalseExpr))
return false;
this->fallthrough(LabelEnd);
this->emitLabel(LabelEnd);
return true;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitStringLiteral(const StringLiteral *E) {
unsigned StringIndex = P.createGlobalString(E);
return this->emitGetPtrGlobal(StringIndex, E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCharacterLiteral(
const CharacterLiteral *E) {
return this->emitConst(E->getValue(), E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCompoundAssignOperator(
const CompoundAssignOperator *E) {
const Expr *LHS = E->getLHS();
const Expr *RHS = E->getRHS();
std::optional<PrimType> LT = classify(E->getLHS()->getType());
std::optional<PrimType> RT = classify(E->getRHS()->getType());
if (!LT || !RT)
return false;
assert(!E->getType()->isPointerType() &&
"Support pointer arithmethic in compound assignment operators");
// Get LHS pointer, load its value and get RHS value.
if (!visit(LHS))
return false;
if (!this->emitLoad(*LT, E))
return false;
if (!visit(RHS))
return false;
// Perform operation.
switch (E->getOpcode()) {
case BO_AddAssign:
if (!this->emitAdd(*LT, E))
return false;
break;
case BO_SubAssign:
if (!this->emitSub(*LT, E))
return false;
break;
case BO_MulAssign:
case BO_DivAssign:
case BO_RemAssign:
case BO_ShlAssign:
if (!this->emitShl(*LT, *RT, E))
return false;
break;
case BO_ShrAssign:
if (!this->emitShr(*LT, *RT, E))
return false;
break;
case BO_AndAssign:
case BO_XorAssign:
case BO_OrAssign:
default:
llvm_unreachable("Unimplemented compound assign operator");
}
// And store the result in LHS.
if (DiscardResult)
return this->emitStorePop(*LT, E);
return this->emitStore(*LT, E);
}
template <class Emitter> bool ByteCodeExprGen<Emitter>::discard(const Expr *E) {
OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true);
return this->Visit(E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visit(const Expr *E) {
OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false);
return this->Visit(E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitBool(const Expr *E) {
if (std::optional<PrimType> T = classify(E->getType())) {
return visit(E);
} else {
return this->bail(E);
}
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitZeroInitializer(PrimType T, const Expr *E) {
switch (T) {
case PT_Bool:
return this->emitZeroBool(E);
case PT_Sint8:
return this->emitZeroSint8(E);
case PT_Uint8:
return this->emitZeroUint8(E);
case PT_Sint16:
return this->emitZeroSint16(E);
case PT_Uint16:
return this->emitZeroUint16(E);
case PT_Sint32:
return this->emitZeroSint32(E);
case PT_Uint32:
return this->emitZeroUint32(E);
case PT_Sint64:
return this->emitZeroSint64(E);
case PT_Uint64:
return this->emitZeroUint64(E);
case PT_Ptr:
return this->emitNullPtr(E);
}
llvm_unreachable("unknown primitive type");
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::dereference(
const Expr *LV, DerefKind AK, llvm::function_ref<bool(PrimType)> Direct,
llvm::function_ref<bool(PrimType)> Indirect) {
if (std::optional<PrimType> T = classify(LV->getType())) {
if (!LV->refersToBitField()) {
// Only primitive, non bit-field types can be dereferenced directly.
if (auto *DE = dyn_cast<DeclRefExpr>(LV)) {
if (!DE->getDecl()->getType()->isReferenceType()) {
if (auto *PD = dyn_cast<ParmVarDecl>(DE->getDecl()))
return dereferenceParam(LV, *T, PD, AK, Direct, Indirect);
if (auto *VD = dyn_cast<VarDecl>(DE->getDecl()))
return dereferenceVar(LV, *T, VD, AK, Direct, Indirect);
}
}
}
if (!visit(LV))
return false;
return Indirect(*T);
}
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::dereferenceParam(
const Expr *LV, PrimType T, const ParmVarDecl *PD, DerefKind AK,
llvm::function_ref<bool(PrimType)> Direct,
llvm::function_ref<bool(PrimType)> Indirect) {
auto It = this->Params.find(PD);
if (It != this->Params.end()) {
unsigned Idx = It->second;
switch (AK) {
case DerefKind::Read:
return DiscardResult ? true : this->emitGetParam(T, Idx, LV);
case DerefKind::Write:
if (!Direct(T))
return false;
if (!this->emitSetParam(T, Idx, LV))
return false;
return DiscardResult ? true : this->emitGetPtrParam(Idx, LV);
case DerefKind::ReadWrite:
if (!this->emitGetParam(T, Idx, LV))
return false;
if (!Direct(T))
return false;
if (!this->emitSetParam(T, Idx, LV))
return false;
return DiscardResult ? true : this->emitGetPtrParam(Idx, LV);
}
return true;
}
// If the param is a pointer, we can dereference a dummy value.
if (!DiscardResult && T == PT_Ptr && AK == DerefKind::Read) {
if (auto Idx = P.getOrCreateDummy(PD))
return this->emitGetPtrGlobal(*Idx, PD);
return false;
}
// Value cannot be produced - try to emit pointer and do stuff with it.
return visit(LV) && Indirect(T);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::dereferenceVar(
const Expr *LV, PrimType T, const VarDecl *VD, DerefKind AK,
llvm::function_ref<bool(PrimType)> Direct,
llvm::function_ref<bool(PrimType)> Indirect) {
auto It = Locals.find(VD);
if (It != Locals.end()) {
const auto &L = It->second;
switch (AK) {
case DerefKind::Read:
if (!this->emitGetLocal(T, L.Offset, LV))
return false;
return DiscardResult ? this->emitPop(T, LV) : true;
case DerefKind::Write:
if (!Direct(T))
return false;
if (!this->emitSetLocal(T, L.Offset, LV))
return false;
return DiscardResult ? true : this->emitGetPtrLocal(L.Offset, LV);
case DerefKind::ReadWrite:
if (!this->emitGetLocal(T, L.Offset, LV))
return false;
if (!Direct(T))
return false;
if (!this->emitSetLocal(T, L.Offset, LV))
return false;
return DiscardResult ? true : this->emitGetPtrLocal(L.Offset, LV);
}
} else if (auto Idx = P.getGlobal(VD)) {
switch (AK) {
case DerefKind::Read:
if (!this->emitGetGlobal(T, *Idx, LV))
return false;
return DiscardResult ? this->emitPop(T, LV) : true;
case DerefKind::Write:
if (!Direct(T))
return false;
if (!this->emitSetGlobal(T, *Idx, LV))
return false;
return DiscardResult ? true : this->emitGetPtrGlobal(*Idx, LV);
case DerefKind::ReadWrite:
if (!this->emitGetGlobal(T, *Idx, LV))
return false;
if (!Direct(T))
return false;
if (!this->emitSetGlobal(T, *Idx, LV))
return false;
return DiscardResult ? true : this->emitGetPtrGlobal(*Idx, LV);
}
}
// If the declaration is a constant value, emit it here even
// though the declaration was not evaluated in the current scope.
// The access mode can only be read in this case.
if (!DiscardResult && AK == DerefKind::Read) {
if (VD->hasLocalStorage() && VD->hasInit() && !VD->isConstexpr()) {
QualType VT = VD->getType();
if (VT.isConstQualified() && VT->isFundamentalType())
return this->visit(VD->getInit());
}
}
// Value cannot be produced - try to emit pointer.
return visit(LV) && Indirect(T);
}
template <class Emitter>
template <typename T>
bool ByteCodeExprGen<Emitter>::emitConst(T Value, const Expr *E) {
switch (classifyPrim(E->getType())) {
case PT_Sint8:
return this->emitConstSint8(Value, E);
case PT_Uint8:
return this->emitConstUint8(Value, E);
case PT_Sint16:
return this->emitConstSint16(Value, E);
case PT_Uint16:
return this->emitConstUint16(Value, E);
case PT_Sint32:
return this->emitConstSint32(Value, E);
case PT_Uint32:
return this->emitConstUint32(Value, E);
case PT_Sint64:
return this->emitConstSint64(Value, E);
case PT_Uint64:
return this->emitConstUint64(Value, E);
case PT_Bool:
return this->emitConstBool(Value, E);
case PT_Ptr:
llvm_unreachable("Invalid integral type");
break;
}
llvm_unreachable("unknown primitive type");
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::emitConst(const APSInt &Value, const Expr *E) {
if (Value.isSigned())
return this->emitConst(Value.getSExtValue(), E);
return this->emitConst(Value.getZExtValue(), E);
}
template <class Emitter>
unsigned ByteCodeExprGen<Emitter>::allocateLocalPrimitive(DeclTy &&Src,
PrimType Ty,
bool IsConst,
bool IsExtended) {
// Make sure we don't accidentally register the same decl twice.
if (const auto *VD =
dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
assert(!P.getGlobal(VD));
assert(Locals.find(VD) == Locals.end());
}
// FIXME: There are cases where Src.is<Expr*>() is wrong, e.g.
// (int){12} in C. Consider using Expr::isTemporaryObject() instead
// or isa<MaterializeTemporaryExpr>().
Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst,
Src.is<const Expr *>());
Scope::Local Local = this->createLocal(D);
if (auto *VD = dyn_cast_or_null<ValueDecl>(Src.dyn_cast<const Decl *>()))
Locals.insert({VD, Local});
VarScope->add(Local, IsExtended);
return Local.Offset;
}
template <class Emitter>
std::optional<unsigned>
ByteCodeExprGen<Emitter>::allocateLocal(DeclTy &&Src, bool IsExtended) {
// Make sure we don't accidentally register the same decl twice.
if (const auto *VD =
dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
assert(!P.getGlobal(VD));
assert(Locals.find(VD) == Locals.end());
}
QualType Ty;
const ValueDecl *Key = nullptr;
const Expr *Init = nullptr;
bool IsTemporary = false;
if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
Key = VD;
Ty = VD->getType();
if (const auto *VarD = dyn_cast<VarDecl>(VD))
Init = VarD->getInit();
}
if (auto *E = Src.dyn_cast<const Expr *>()) {
IsTemporary = true;
Ty = E->getType();
}
Descriptor *D = P.createDescriptor(
Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
IsTemporary, /*IsMutable=*/false, Init);
if (!D)
return {};
Scope::Local Local = this->createLocal(D);
if (Key)
Locals.insert({Key, Local});
VarScope->add(Local, IsExtended);
return Local.Offset;
}
// NB: When calling this function, we have a pointer to the
// array-to-initialize on the stack.
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitArrayInitializer(const Expr *Initializer) {
assert(Initializer->getType()->isArrayType());
// TODO: Fillers?
if (const auto *InitList = dyn_cast<InitListExpr>(Initializer)) {
unsigned ElementIndex = 0;
for (const Expr *Init : InitList->inits()) {
if (std::optional<PrimType> T = classify(Init->getType())) {
// Visit the primitive element like normal.
if (!this->emitDupPtr(Init))
return false;
if (!this->visit(Init))
return false;
if (!this->emitInitElem(*T, ElementIndex, Init))
return false;
} else {
// Advance the pointer currently on the stack to the given
// dimension and narrow().
if (!this->emitDupPtr(Init))
return false;
if (!this->emitConstUint32(ElementIndex, Init))
return false;
if (!this->emitAddOffsetUint32(Init))
return false;
if (!this->emitNarrowPtr(Init))
return false;
if (!visitInitializer(Init))
return false;
}
if (!this->emitPopPtr(Init))
return false;
++ElementIndex;
}
return true;
} else if (const auto *DIE = dyn_cast<CXXDefaultInitExpr>(Initializer)) {
return this->visitInitializer(DIE->getExpr());
} else if (const auto *AILE = dyn_cast<ArrayInitLoopExpr>(Initializer)) {
// TODO: This compiles to quite a lot of bytecode if the array is larger.
// Investigate compiling this to a loop, or at least try to use
// the AILE's Common expr.
const Expr *SubExpr = AILE->getSubExpr();
size_t Size = AILE->getArraySize().getZExtValue();
std::optional<PrimType> ElemT = classify(SubExpr->getType());
// So, every iteration, we execute an assignment here
// where the LHS is on the stack (the target array)
// and the RHS is our SubExpr.
for (size_t I = 0; I != Size; ++I) {
ArrayIndexScope<Emitter> IndexScope(this, I);
if (!this->emitDupPtr(SubExpr)) // LHS
return false;
if (ElemT) {
if (!this->visit(SubExpr))
return false;
if (!this->emitInitElem(*ElemT, I, Initializer))
return false;
} else {
// Narrow to our array element and recurse into visitInitializer()
if (!this->emitConstUint64(I, SubExpr))
return false;
if (!this->emitAddOffsetUint64(SubExpr))
return false;
if (!this->emitNarrowPtr(SubExpr))
return false;
if (!visitInitializer(SubExpr))
return false;
}
if (!this->emitPopPtr(Initializer))
return false;
}
return true;
} else if (const auto *IVIE = dyn_cast<ImplicitValueInitExpr>(Initializer)) {
const ArrayType *AT = IVIE->getType()->getAsArrayTypeUnsafe();
assert(AT);
const auto *CAT = cast<ConstantArrayType>(AT);
size_t NumElems = CAT->getSize().getZExtValue();
if (std::optional<PrimType> ElemT = classify(CAT->getElementType())) {
// TODO(perf): For int and bool types, we can probably just skip this
// since we memset our Block*s to 0 and so we have the desired value
// without this.
for (size_t I = 0; I != NumElems; ++I) {
if (!this->emitZero(*ElemT, Initializer))
return false;
if (!this->emitInitElem(*ElemT, I, Initializer))
return false;
}
} else {
assert(false && "default initializer for non-primitive type");
}
return true;
} else if (const auto *Ctor = dyn_cast<CXXConstructExpr>(Initializer)) {
const ConstantArrayType *CAT =
Ctx.getASTContext().getAsConstantArrayType(Ctor->getType());
assert(CAT);
size_t NumElems = CAT->getSize().getZExtValue();
const Function *Func = getFunction(Ctor->getConstructor());
if (!Func || !Func->isConstexpr())
return false;
// FIXME(perf): We're calling the constructor once per array element here,
// in the old intepreter we had a special-case for trivial constructors.
for (size_t I = 0; I != NumElems; ++I) {
if (!this->emitDupPtr(Initializer))
return false;
if (!this->emitConstUint64(I, Initializer))
return false;
if (!this->emitAddOffsetUint64(Initializer))
return false;
if (!this->emitNarrowPtr(Initializer))
return false;
// Constructor arguments.
for (const auto *Arg : Ctor->arguments()) {
if (!this->visit(Arg))
return false;
}
if (!this->emitCall(Func, Initializer))
return false;
}
return true;
}
assert(false && "Unknown expression for array initialization");
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitRecordInitializer(const Expr *Initializer) {
Initializer = Initializer->IgnoreParenImpCasts();
assert(Initializer->getType()->isRecordType());
if (const auto CtorExpr = dyn_cast<CXXConstructExpr>(Initializer)) {
const Function *Func = getFunction(CtorExpr->getConstructor());
if (!Func || !Func->isConstexpr())
return false;
// The This pointer is already on the stack because this is an initializer,
// but we need to dup() so the call() below has its own copy.
if (!this->emitDupPtr(Initializer))
return false;
// Constructor arguments.
for (const auto *Arg : CtorExpr->arguments()) {
if (!this->visit(Arg))
return false;
}
return this->emitCall(Func, Initializer);
} else if (const auto *InitList = dyn_cast<InitListExpr>(Initializer)) {
const Record *R = getRecord(InitList->getType());
unsigned InitIndex = 0;
for (const Expr *Init : InitList->inits()) {
const Record::Field *FieldToInit = R->getField(InitIndex);
if (!this->emitDupPtr(Initializer))
return false;
if (std::optional<PrimType> T = classify(Init)) {
if (!this->visit(Init))
return false;
if (!this->emitInitField(*T, FieldToInit->Offset, Initializer))
return false;
if (!this->emitPopPtr(Initializer))
return false;
} else {
// Non-primitive case. Get a pointer to the field-to-initialize
// on the stack and recurse into visitInitializer().
if (!this->emitGetPtrField(FieldToInit->Offset, Init))
return false;
if (!this->visitInitializer(Init))
return false;
if (!this->emitPopPtr(Initializer))
return false;
}
++InitIndex;
}
return true;
} else if (const CallExpr *CE = dyn_cast<CallExpr>(Initializer)) {
// RVO functions expect a pointer to initialize on the stack.
// Dup our existing pointer so it has its own copy to use.
if (!this->emitDupPtr(Initializer))
return false;
return this->VisitCallExpr(CE);
} else if (const auto *DIE = dyn_cast<CXXDefaultInitExpr>(Initializer)) {
return this->visitInitializer(DIE->getExpr());
}
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitInitializer(const Expr *Initializer) {
QualType InitializerType = Initializer->getType();
if (InitializerType->isArrayType())
return visitArrayInitializer(Initializer);
if (InitializerType->isRecordType())
return visitRecordInitializer(Initializer);
// Otherwise, visit the expression like normal.
return this->visit(Initializer);
}
template <class Emitter>
const RecordType *ByteCodeExprGen<Emitter>::getRecordTy(QualType Ty) {
if (const PointerType *PT = dyn_cast<PointerType>(Ty))
return PT->getPointeeType()->getAs<RecordType>();
else
return Ty->getAs<RecordType>();
}
template <class Emitter>
Record *ByteCodeExprGen<Emitter>::getRecord(QualType Ty) {
if (auto *RecordTy = getRecordTy(Ty)) {
return getRecord(RecordTy->getDecl());
}
return nullptr;
}
template <class Emitter>
Record *ByteCodeExprGen<Emitter>::getRecord(const RecordDecl *RD) {
return P.getOrCreateRecord(RD);
}
template <class Emitter>
const Function *ByteCodeExprGen<Emitter>::getFunction(const FunctionDecl *FD) {
assert(FD);
const Function *Func = P.getFunction(FD);
bool IsBeingCompiled = Func && !Func->isFullyCompiled();
bool WasNotDefined = Func && !Func->hasBody();
if (IsBeingCompiled)
return Func;
if (!Func || WasNotDefined) {
if (auto R = ByteCodeStmtGen<ByteCodeEmitter>(Ctx, P).compileFunc(FD))
Func = *R;
else {
llvm::consumeError(R.takeError());
return nullptr;
}
}
return Func;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitExpr(const Expr *Exp) {
ExprScope<Emitter> RootScope(this);
if (!visit(Exp))
return false;
if (std::optional<PrimType> T = classify(Exp))
return this->emitRet(*T, Exp);
else
return this->emitRetValue(Exp);
}
/// Toplevel visitDecl().
/// We get here from evaluateAsInitializer().
/// We need to evaluate the initializer and return its value.
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitDecl(const VarDecl *VD) {
std::optional<PrimType> VarT = classify(VD->getType());
// Create and initialize the variable.
if (!this->visitVarDecl(VD))
return false;
// Get a pointer to the variable
if (shouldBeGloballyIndexed(VD)) {
auto GlobalIndex = P.getGlobal(VD);
assert(GlobalIndex); // visitVarDecl() didn't return false.
if (!this->emitGetPtrGlobal(*GlobalIndex, VD))
return false;
} else {
auto Local = Locals.find(VD);
assert(Local != Locals.end()); // Same here.
if (!this->emitGetPtrLocal(Local->second.Offset, VD))
return false;
}
// Return the value
if (VarT) {
if (!this->emitLoadPop(*VarT, VD))
return false;
return this->emitRet(*VarT, VD);
}
return this->emitRetValue(VD);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitVarDecl(const VarDecl *VD) {
const Expr *Init = VD->getInit();
std::optional<PrimType> VarT = classify(VD->getType());
if (shouldBeGloballyIndexed(VD)) {
std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(VD, Init);
if (!GlobalIndex)
return this->bail(VD);
assert(Init);
{
DeclScope<Emitter> LocalScope(this, VD);
if (VarT) {
if (!this->visit(Init))
return false;
return this->emitInitGlobal(*VarT, *GlobalIndex, VD);
}
return this->visitGlobalInitializer(Init, *GlobalIndex);
}
} else {
VariableScope<Emitter> LocalScope(this);
if (VarT) {
unsigned Offset = this->allocateLocalPrimitive(
VD, *VarT, VD->getType().isConstQualified());
if (Init) {
// Compile the initializer in its own scope.
ExprScope<Emitter> Scope(this);
if (!this->visit(Init))
return false;
return this->emitSetLocal(*VarT, Offset, VD);
}
} else {
if (std::optional<unsigned> Offset = this->allocateLocal(VD)) {
if (Init)
return this->visitLocalInitializer(Init, *Offset);
}
}
return true;
}
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCallExpr(const CallExpr *E) {
assert(!E->getBuiltinCallee() && "Builtin functions aren't supported yet");
const Decl *Callee = E->getCalleeDecl();
if (const auto *FuncDecl = dyn_cast_or_null<FunctionDecl>(Callee)) {
const Function *Func = getFunction(FuncDecl);
if (!Func)
return false;
// If the function is being compiled right now, this is a recursive call.
// In that case, the function can't be valid yet, even though it will be
// later.
// If the function is already fully compiled but not constexpr, it was
// found to be faulty earlier on, so bail out.
if (Func->isFullyCompiled() && !Func->isConstexpr())
return false;
QualType ReturnType = E->getCallReturnType(Ctx.getASTContext());
std::optional<PrimType> T = classify(ReturnType);
if (Func->hasRVO() && DiscardResult) {
// If we need to discard the return value but the function returns its
// value via an RVO pointer, we need to create one such pointer just
// for this call.
if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
if (!this->emitGetPtrLocal(*LocalIndex, E))
return false;
}
}
// Put arguments on the stack.
for (const auto *Arg : E->arguments()) {
if (!this->visit(Arg))
return false;
}
// In any case call the function. The return value will end up on the stack and
// if the function has RVO, we already have the pointer on the stack to write
// the result into.
if (!this->emitCall(Func, E))
return false;
if (DiscardResult && !ReturnType->isVoidType() && T)
return this->emitPop(*T, E);
return true;
} else {
assert(false && "We don't support non-FunctionDecl callees right now.");
}
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCXXMemberCallExpr(
const CXXMemberCallExpr *E) {
// Get a This pointer on the stack.
if (!this->visit(E->getImplicitObjectArgument()))
return false;
return VisitCallExpr(E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCXXDefaultInitExpr(
const CXXDefaultInitExpr *E) {
return this->visit(E->getExpr());
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCXXDefaultArgExpr(
const CXXDefaultArgExpr *E) {
return this->visit(E->getExpr());
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCXXBoolLiteralExpr(
const CXXBoolLiteralExpr *E) {
if (DiscardResult)
return true;
return this->emitConstBool(E->getValue(), E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCXXNullPtrLiteralExpr(
const CXXNullPtrLiteralExpr *E) {
if (DiscardResult)
return true;
return this->emitNullPtr(E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) {
if (DiscardResult)
return true;
return this->emitThis(E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitUnaryOperator(const UnaryOperator *E) {
const Expr *SubExpr = E->getSubExpr();
std::optional<PrimType> T = classify(SubExpr->getType());
// TODO: Support pointers for inc/dec operators.
switch (E->getOpcode()) {
case UO_PostInc: { // x++
if (!this->visit(SubExpr))
return false;
return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E);
}
case UO_PostDec: { // x--
if (!this->visit(SubExpr))
return false;
return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E);
}
case UO_PreInc: { // ++x
if (!this->visit(SubExpr))
return false;
// Post-inc and pre-inc are the same if the value is to be discarded.
if (DiscardResult)
return this->emitIncPop(*T, E);
this->emitLoad(*T, E);
this->emitConst(1, E);
this->emitAdd(*T, E);
return this->emitStore(*T, E);
}
case UO_PreDec: { // --x
if (!this->visit(SubExpr))
return false;
// Post-dec and pre-dec are the same if the value is to be discarded.
if (DiscardResult)
return this->emitDecPop(*T, E);
this->emitLoad(*T, E);
this->emitConst(1, E);
this->emitSub(*T, E);
return this->emitStore(*T, E);
}
case UO_LNot: // !x
if (!this->visit(SubExpr))
return false;
// The Inv doesn't change anything, so skip it if we don't need the result.
return DiscardResult ? this->emitPop(*T, E) : this->emitInvBool(E);
case UO_Minus: // -x
if (!this->visit(SubExpr))
return false;
return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E);
case UO_Plus: // +x
if (!this->visit(SubExpr)) // noop
return false;
return DiscardResult ? this->emitPop(*T, E) : true;
case UO_AddrOf: // &x
// We should already have a pointer when we get here.
if (!this->visit(SubExpr))
return false;
return DiscardResult ? this->emitPop(*T, E) : true;
case UO_Deref: // *x
return dereference(
SubExpr, DerefKind::Read,
[](PrimType) {
llvm_unreachable("Dereferencing requires a pointer");
return false;
},
[this, E](PrimType T) {
return DiscardResult ? this->emitPop(T, E) : true;
});
case UO_Not: // ~x
if (!this->visit(SubExpr))
return false;
return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E);
case UO_Real: // __real x
case UO_Imag: // __imag x
case UO_Extension:
case UO_Coawait:
assert(false && "Unhandled opcode");
}
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) {
const auto *Decl = E->getDecl();
// References are implemented via pointers, so when we see a DeclRefExpr
// pointing to a reference, we need to get its value directly (i.e. the
// pointer to the actual value) instead of a pointer to the pointer to the
// value.
bool IsReference = Decl->getType()->isReferenceType();
if (auto It = Locals.find(Decl); It != Locals.end()) {
const unsigned Offset = It->second.Offset;
if (IsReference)
return this->emitGetLocal(PT_Ptr, Offset, E);
return this->emitGetPtrLocal(Offset, E);
} else if (auto GlobalIndex = P.getGlobal(Decl)) {
if (IsReference)
return this->emitGetGlobal(PT_Ptr, *GlobalIndex, E);
return this->emitGetPtrGlobal(*GlobalIndex, E);
} else if (const auto *PVD = dyn_cast<ParmVarDecl>(Decl)) {
if (auto It = this->Params.find(PVD); It != this->Params.end()) {
if (IsReference)
return this->emitGetParam(PT_Ptr, It->second, E);
return this->emitGetPtrParam(It->second, E);
}
} else if (const auto *ECD = dyn_cast<EnumConstantDecl>(Decl)) {
return this->emitConst(ECD->getInitVal(), E);
}
return false;
}
template <class Emitter>
void ByteCodeExprGen<Emitter>::emitCleanup() {
for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent())
C->emitDestruction();
}
namespace clang {
namespace interp {
template class ByteCodeExprGen<ByteCodeEmitter>;
template class ByteCodeExprGen<EvalEmitter>;
} // namespace interp
} // namespace clang
|