1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
|
//===-- Transfer.cpp --------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines transfer functions that evaluate program statements and
// update an environment accordingly.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/FlowSensitive/Transfer.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Analysis/FlowSensitive/ControlFlowContext.h"
#include "clang/Analysis/FlowSensitive/DataflowEnvironment.h"
#include "clang/Analysis/FlowSensitive/NoopAnalysis.h"
#include "clang/Analysis/FlowSensitive/Value.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/OperatorKinds.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <memory>
#include <tuple>
namespace clang {
namespace dataflow {
static BoolValue &evaluateBooleanEquality(const Expr &LHS, const Expr &RHS,
Environment &Env) {
if (auto *LHSValue =
dyn_cast_or_null<BoolValue>(Env.getValue(LHS, SkipPast::Reference)))
if (auto *RHSValue =
dyn_cast_or_null<BoolValue>(Env.getValue(RHS, SkipPast::Reference)))
return Env.makeIff(*LHSValue, *RHSValue);
return Env.makeAtomicBoolValue();
}
// Functionally updates `V` such that any instances of `TopBool` are replaced
// with fresh atomic bools. Note: This implementation assumes that `B` is a
// tree; if `B` is a DAG, it will lose any sharing between subvalues that was
// present in the original .
static BoolValue &unpackValue(BoolValue &V, Environment &Env);
template <typename Derived, typename M>
BoolValue &unpackBinaryBoolValue(Environment &Env, BoolValue &B, M build) {
auto &V = *cast<Derived>(&B);
BoolValue &Left = V.getLeftSubValue();
BoolValue &Right = V.getRightSubValue();
BoolValue &ULeft = unpackValue(Left, Env);
BoolValue &URight = unpackValue(Right, Env);
if (&ULeft == &Left && &URight == &Right)
return V;
return (Env.*build)(ULeft, URight);
}
static BoolValue &unpackValue(BoolValue &V, Environment &Env) {
switch (V.getKind()) {
case Value::Kind::Integer:
case Value::Kind::Reference:
case Value::Kind::Pointer:
case Value::Kind::Struct:
llvm_unreachable("BoolValue cannot have any of these kinds.");
case Value::Kind::AtomicBool:
return V;
case Value::Kind::TopBool:
// Unpack `TopBool` into a fresh atomic bool.
return Env.makeAtomicBoolValue();
case Value::Kind::Negation: {
auto &N = *cast<NegationValue>(&V);
BoolValue &Sub = N.getSubVal();
BoolValue &USub = unpackValue(Sub, Env);
if (&USub == &Sub)
return V;
return Env.makeNot(USub);
}
case Value::Kind::Conjunction:
return unpackBinaryBoolValue<ConjunctionValue>(Env, V,
&Environment::makeAnd);
case Value::Kind::Disjunction:
return unpackBinaryBoolValue<DisjunctionValue>(Env, V,
&Environment::makeOr);
case Value::Kind::Implication:
return unpackBinaryBoolValue<ImplicationValue>(
Env, V, &Environment::makeImplication);
case Value::Kind::Biconditional:
return unpackBinaryBoolValue<BiconditionalValue>(Env, V,
&Environment::makeIff);
}
llvm_unreachable("All reachable cases in switch return");
}
// Unpacks the value (if any) associated with `E` and updates `E` to the new
// value, if any unpacking occured.
static Value *maybeUnpackLValueExpr(const Expr &E, Environment &Env) {
// FIXME: this is too flexible: it _allows_ a reference, while it should
// _require_ one, since lvalues should always be wrapped in `ReferenceValue`.
auto *Loc = Env.getStorageLocation(E, SkipPast::Reference);
if (Loc == nullptr)
return nullptr;
auto *Val = Env.getValue(*Loc);
auto *B = dyn_cast_or_null<BoolValue>(Val);
if (B == nullptr)
return Val;
auto &UnpackedVal = unpackValue(*B, Env);
if (&UnpackedVal == Val)
return Val;
Env.setValue(*Loc, UnpackedVal);
return &UnpackedVal;
}
class TransferVisitor : public ConstStmtVisitor<TransferVisitor> {
public:
TransferVisitor(const StmtToEnvMap &StmtToEnv, Environment &Env)
: StmtToEnv(StmtToEnv), Env(Env) {}
void VisitBinaryOperator(const BinaryOperator *S) {
const Expr *LHS = S->getLHS();
assert(LHS != nullptr);
const Expr *RHS = S->getRHS();
assert(RHS != nullptr);
switch (S->getOpcode()) {
case BO_Assign: {
auto *LHSLoc = Env.getStorageLocation(*LHS, SkipPast::Reference);
if (LHSLoc == nullptr)
break;
auto *RHSVal = Env.getValue(*RHS, SkipPast::Reference);
if (RHSVal == nullptr)
break;
// Assign a value to the storage location of the left-hand side.
Env.setValue(*LHSLoc, *RHSVal);
// Assign a storage location for the whole expression.
Env.setStorageLocation(*S, *LHSLoc);
break;
}
case BO_LAnd:
case BO_LOr: {
BoolValue &LHSVal = getLogicOperatorSubExprValue(*LHS);
BoolValue &RHSVal = getLogicOperatorSubExprValue(*RHS);
auto &Loc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, Loc);
if (S->getOpcode() == BO_LAnd)
Env.setValue(Loc, Env.makeAnd(LHSVal, RHSVal));
else
Env.setValue(Loc, Env.makeOr(LHSVal, RHSVal));
break;
}
case BO_NE:
case BO_EQ: {
auto &LHSEqRHSValue = evaluateBooleanEquality(*LHS, *RHS, Env);
auto &Loc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, Loc);
Env.setValue(Loc, S->getOpcode() == BO_EQ ? LHSEqRHSValue
: Env.makeNot(LHSEqRHSValue));
break;
}
case BO_Comma: {
if (auto *Loc = Env.getStorageLocation(*RHS, SkipPast::None))
Env.setStorageLocation(*S, *Loc);
break;
}
default:
break;
}
}
void VisitDeclRefExpr(const DeclRefExpr *S) {
const ValueDecl *VD = S->getDecl();
assert(VD != nullptr);
auto *DeclLoc = Env.getStorageLocation(*VD, SkipPast::None);
if (DeclLoc == nullptr)
return;
if (VD->getType()->isReferenceType()) {
assert(isa_and_nonnull<ReferenceValue>(Env.getValue((*DeclLoc))) &&
"reference-typed declarations map to `ReferenceValue`s");
Env.setStorageLocation(*S, *DeclLoc);
} else {
auto &Loc = Env.createStorageLocation(*S);
auto &Val = Env.takeOwnership(std::make_unique<ReferenceValue>(*DeclLoc));
Env.setStorageLocation(*S, Loc);
Env.setValue(Loc, Val);
}
}
void VisitDeclStmt(const DeclStmt *S) {
// Group decls are converted into single decls in the CFG so the cast below
// is safe.
const auto &D = *cast<VarDecl>(S->getSingleDecl());
// Static local vars are already initialized in `Environment`.
if (D.hasGlobalStorage())
return;
// The storage location for `D` could have been created earlier, before the
// variable's declaration statement (for example, in the case of
// BindingDecls).
auto *MaybeLoc = Env.getStorageLocation(D, SkipPast::None);
if (MaybeLoc == nullptr) {
MaybeLoc = &Env.createStorageLocation(D);
Env.setStorageLocation(D, *MaybeLoc);
}
auto &Loc = *MaybeLoc;
const Expr *InitExpr = D.getInit();
if (InitExpr == nullptr) {
// No initializer expression - associate `Loc` with a new value.
if (Value *Val = Env.createValue(D.getType()))
Env.setValue(Loc, *Val);
return;
}
if (D.getType()->isReferenceType()) {
// Initializing a reference variable - do not create a reference to
// reference.
if (auto *InitExprLoc =
Env.getStorageLocation(*InitExpr, SkipPast::Reference)) {
auto &Val =
Env.takeOwnership(std::make_unique<ReferenceValue>(*InitExprLoc));
Env.setValue(Loc, Val);
}
} else if (auto *InitExprVal = Env.getValue(*InitExpr, SkipPast::None)) {
Env.setValue(Loc, *InitExprVal);
}
if (Env.getValue(Loc) == nullptr) {
// We arrive here in (the few) cases where an expression is intentionally
// "uninterpreted". There are two ways to handle this situation: propagate
// the status, so that uninterpreted initializers result in uninterpreted
// variables, or provide a default value. We choose the latter so that
// later refinements of the variable can be used for reasoning about the
// surrounding code.
//
// FIXME. If and when we interpret all language cases, change this to
// assert that `InitExpr` is interpreted, rather than supplying a default
// value (assuming we don't update the environment API to return
// references).
if (Value *Val = Env.createValue(D.getType()))
Env.setValue(Loc, *Val);
}
if (const auto *Decomp = dyn_cast<DecompositionDecl>(&D)) {
// If VarDecl is a DecompositionDecl, evaluate each of its bindings. This
// needs to be evaluated after initializing the values in the storage for
// VarDecl, as the bindings refer to them.
// FIXME: Add support for ArraySubscriptExpr.
// FIXME: Consider adding AST nodes used in BindingDecls to the CFG.
for (const auto *B : Decomp->bindings()) {
if (auto *ME = dyn_cast_or_null<MemberExpr>(B->getBinding())) {
auto *DE = dyn_cast_or_null<DeclRefExpr>(ME->getBase());
if (DE == nullptr)
continue;
// ME and its base haven't been visited because they aren't included
// in the statements of the CFG basic block.
VisitDeclRefExpr(DE);
VisitMemberExpr(ME);
if (auto *Loc = Env.getStorageLocation(*ME, SkipPast::Reference))
Env.setStorageLocation(*B, *Loc);
} else if (auto *VD = B->getHoldingVar()) {
// Holding vars are used to back the BindingDecls of tuple-like
// types. The holding var declarations appear *after* this statement,
// so we have to create a location for them here to share with `B`. We
// don't visit the binding, because we know it will be a DeclRefExpr
// to `VD`.
auto &VDLoc = Env.createStorageLocation(*VD);
Env.setStorageLocation(*VD, VDLoc);
Env.setStorageLocation(*B, VDLoc);
}
}
}
}
void VisitImplicitCastExpr(const ImplicitCastExpr *S) {
const Expr *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
switch (S->getCastKind()) {
case CK_IntegralToBoolean: {
// This cast creates a new, boolean value from the integral value. We
// model that with a fresh value in the environment, unless it's already a
// boolean.
auto &Loc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, Loc);
if (auto *SubExprVal = dyn_cast_or_null<BoolValue>(
Env.getValue(*SubExpr, SkipPast::Reference)))
Env.setValue(Loc, *SubExprVal);
else
// FIXME: If integer modeling is added, then update this code to create
// the boolean based on the integer model.
Env.setValue(Loc, Env.makeAtomicBoolValue());
break;
}
case CK_LValueToRValue: {
// When an L-value is used as an R-value, it may result in sharing, so we
// need to unpack any nested `Top`s.
auto *SubExprVal = maybeUnpackLValueExpr(*SubExpr, Env);
if (SubExprVal == nullptr)
break;
auto &ExprLoc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, ExprLoc);
Env.setValue(ExprLoc, *SubExprVal);
break;
}
case CK_IntegralCast:
// FIXME: This cast creates a new integral value from the
// subexpression. But, because we don't model integers, we don't
// distinguish between this new value and the underlying one. If integer
// modeling is added, then update this code to create a fresh location and
// value.
case CK_UncheckedDerivedToBase:
case CK_ConstructorConversion:
case CK_UserDefinedConversion:
// FIXME: Add tests that excercise CK_UncheckedDerivedToBase,
// CK_ConstructorConversion, and CK_UserDefinedConversion.
case CK_NoOp: {
// FIXME: Consider making `Environment::getStorageLocation` skip noop
// expressions (this and other similar expressions in the file) instead of
// assigning them storage locations.
auto *SubExprLoc = Env.getStorageLocation(*SubExpr, SkipPast::None);
if (SubExprLoc == nullptr)
break;
Env.setStorageLocation(*S, *SubExprLoc);
break;
}
case CK_NullToPointer:
case CK_NullToMemberPointer: {
auto &Loc = Env.createStorageLocation(S->getType());
Env.setStorageLocation(*S, Loc);
auto &NullPointerVal =
Env.getOrCreateNullPointerValue(S->getType()->getPointeeType());
Env.setValue(Loc, NullPointerVal);
break;
}
default:
break;
}
}
void VisitUnaryOperator(const UnaryOperator *S) {
const Expr *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
switch (S->getOpcode()) {
case UO_Deref: {
// Skip past a reference to handle dereference of a dependent pointer.
const auto *SubExprVal = cast_or_null<PointerValue>(
Env.getValue(*SubExpr, SkipPast::Reference));
if (SubExprVal == nullptr)
break;
auto &Loc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, Loc);
Env.setValue(Loc, Env.takeOwnership(std::make_unique<ReferenceValue>(
SubExprVal->getPointeeLoc())));
break;
}
case UO_AddrOf: {
// Do not form a pointer to a reference. If `SubExpr` is assigned a
// `ReferenceValue` then form a value that points to the location of its
// pointee.
StorageLocation *PointeeLoc =
Env.getStorageLocation(*SubExpr, SkipPast::Reference);
if (PointeeLoc == nullptr)
break;
auto &PointerLoc = Env.createStorageLocation(*S);
auto &PointerVal =
Env.takeOwnership(std::make_unique<PointerValue>(*PointeeLoc));
Env.setStorageLocation(*S, PointerLoc);
Env.setValue(PointerLoc, PointerVal);
break;
}
case UO_LNot: {
auto *SubExprVal =
dyn_cast_or_null<BoolValue>(Env.getValue(*SubExpr, SkipPast::None));
if (SubExprVal == nullptr)
break;
auto &ExprLoc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, ExprLoc);
Env.setValue(ExprLoc, Env.makeNot(*SubExprVal));
break;
}
default:
break;
}
}
void VisitCXXThisExpr(const CXXThisExpr *S) {
auto *ThisPointeeLoc = Env.getThisPointeeStorageLocation();
if (ThisPointeeLoc == nullptr)
// Unions are not supported yet, and will not have a location for the
// `this` expression's pointee.
return;
auto &Loc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, Loc);
Env.setValue(Loc, Env.takeOwnership(
std::make_unique<PointerValue>(*ThisPointeeLoc)));
}
void VisitReturnStmt(const ReturnStmt *S) {
if (!Env.getAnalysisOptions().ContextSensitiveOpts)
return;
auto *Ret = S->getRetValue();
if (Ret == nullptr)
return;
auto *Val = Env.getValue(*Ret, SkipPast::None);
if (Val == nullptr)
return;
// FIXME: Support reference-type returns.
if (Val->getKind() == Value::Kind::Reference)
return;
auto *Loc = Env.getReturnStorageLocation();
assert(Loc != nullptr);
// FIXME: Support reference-type returns.
if (Loc->getType()->isReferenceType())
return;
// FIXME: Model NRVO.
Env.setValue(*Loc, *Val);
}
void VisitMemberExpr(const MemberExpr *S) {
ValueDecl *Member = S->getMemberDecl();
assert(Member != nullptr);
// FIXME: Consider assigning pointer values to function member expressions.
if (Member->isFunctionOrFunctionTemplate())
return;
// FIXME: if/when we add support for modeling enums, use that support here.
if (isa<EnumConstantDecl>(Member))
return;
if (auto *D = dyn_cast<VarDecl>(Member)) {
if (D->hasGlobalStorage()) {
auto *VarDeclLoc = Env.getStorageLocation(*D, SkipPast::None);
if (VarDeclLoc == nullptr)
return;
if (VarDeclLoc->getType()->isReferenceType()) {
assert(isa_and_nonnull<ReferenceValue>(Env.getValue((*VarDeclLoc))) &&
"reference-typed declarations map to `ReferenceValue`s");
Env.setStorageLocation(*S, *VarDeclLoc);
} else {
auto &Loc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, Loc);
Env.setValue(Loc, Env.takeOwnership(
std::make_unique<ReferenceValue>(*VarDeclLoc)));
}
return;
}
}
// The receiver can be either a value or a pointer to a value. Skip past the
// indirection to handle both cases.
auto *BaseLoc = cast_or_null<AggregateStorageLocation>(
Env.getStorageLocation(*S->getBase(), SkipPast::ReferenceThenPointer));
if (BaseLoc == nullptr)
return;
auto &MemberLoc = BaseLoc->getChild(*Member);
if (MemberLoc.getType()->isReferenceType()) {
// Based on its type, `MemberLoc` must be mapped either to nothing or to a
// `ReferenceValue`. For the former, we won't set a storage location for
// this expression, so as to maintain an invariant lvalue expressions;
// namely, that their location maps to a `ReferenceValue`. In this,
// lvalues are unlike other expressions, where it is valid for their
// location to map to nothing (because they are not modeled).
//
// Note: we need this invariant for lvalues so that, when accessing a
// value, we can distinguish an rvalue from an lvalue. An alternative
// design, which takes the expression's value category into account, would
// avoid the need for this invariant.
if (auto *V = Env.getValue(MemberLoc)) {
assert(isa<ReferenceValue>(V) &&
"reference-typed declarations map to `ReferenceValue`s");
Env.setStorageLocation(*S, MemberLoc);
}
} else {
auto &Loc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, Loc);
Env.setValue(
Loc, Env.takeOwnership(std::make_unique<ReferenceValue>(MemberLoc)));
}
}
void VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *S) {
const Expr *InitExpr = S->getExpr();
assert(InitExpr != nullptr);
Value *InitExprVal = Env.getValue(*InitExpr, SkipPast::None);
if (InitExprVal == nullptr)
return;
const FieldDecl *Field = S->getField();
assert(Field != nullptr);
auto &ThisLoc =
*cast<AggregateStorageLocation>(Env.getThisPointeeStorageLocation());
auto &FieldLoc = ThisLoc.getChild(*Field);
Env.setValue(FieldLoc, *InitExprVal);
}
void VisitCXXConstructExpr(const CXXConstructExpr *S) {
const CXXConstructorDecl *ConstructorDecl = S->getConstructor();
assert(ConstructorDecl != nullptr);
if (ConstructorDecl->isCopyOrMoveConstructor()) {
assert(S->getNumArgs() == 1);
const Expr *Arg = S->getArg(0);
assert(Arg != nullptr);
if (S->isElidable()) {
auto *ArgLoc = Env.getStorageLocation(*Arg, SkipPast::Reference);
if (ArgLoc == nullptr)
return;
Env.setStorageLocation(*S, *ArgLoc);
} else if (auto *ArgVal = Env.getValue(*Arg, SkipPast::Reference)) {
auto &Loc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, Loc);
Env.setValue(Loc, *ArgVal);
}
return;
}
auto &Loc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, Loc);
if (Value *Val = Env.createValue(S->getType()))
Env.setValue(Loc, *Val);
transferInlineCall(S, ConstructorDecl);
}
void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *S) {
if (S->getOperator() == OO_Equal) {
assert(S->getNumArgs() == 2);
const Expr *Arg0 = S->getArg(0);
assert(Arg0 != nullptr);
const Expr *Arg1 = S->getArg(1);
assert(Arg1 != nullptr);
// Evaluate only copy and move assignment operators.
auto *Arg0Type = Arg0->getType()->getUnqualifiedDesugaredType();
auto *Arg1Type = Arg1->getType()->getUnqualifiedDesugaredType();
if (Arg0Type != Arg1Type)
return;
auto *ObjectLoc = Env.getStorageLocation(*Arg0, SkipPast::Reference);
if (ObjectLoc == nullptr)
return;
auto *Val = Env.getValue(*Arg1, SkipPast::Reference);
if (Val == nullptr)
return;
// Assign a value to the storage location of the object.
Env.setValue(*ObjectLoc, *Val);
// FIXME: Add a test for the value of the whole expression.
// Assign a storage location for the whole expression.
Env.setStorageLocation(*S, *ObjectLoc);
}
}
void VisitCXXFunctionalCastExpr(const CXXFunctionalCastExpr *S) {
if (S->getCastKind() == CK_ConstructorConversion) {
const Expr *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
auto *SubExprLoc = Env.getStorageLocation(*SubExpr, SkipPast::None);
if (SubExprLoc == nullptr)
return;
Env.setStorageLocation(*S, *SubExprLoc);
}
}
void VisitCXXTemporaryObjectExpr(const CXXTemporaryObjectExpr *S) {
auto &Loc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, Loc);
if (Value *Val = Env.createValue(S->getType()))
Env.setValue(Loc, *Val);
}
void VisitCallExpr(const CallExpr *S) {
// Of clang's builtins, only `__builtin_expect` is handled explicitly, since
// others (like trap, debugtrap, and unreachable) are handled by CFG
// construction.
if (S->isCallToStdMove()) {
assert(S->getNumArgs() == 1);
const Expr *Arg = S->getArg(0);
assert(Arg != nullptr);
auto *ArgLoc = Env.getStorageLocation(*Arg, SkipPast::None);
if (ArgLoc == nullptr)
return;
Env.setStorageLocation(*S, *ArgLoc);
} else if (S->getDirectCallee() != nullptr &&
S->getDirectCallee()->getBuiltinID() ==
Builtin::BI__builtin_expect) {
assert(S->getNumArgs() > 0);
assert(S->getArg(0) != nullptr);
// `__builtin_expect` returns by-value, so strip away any potential
// references in the argument.
auto *ArgLoc = Env.getStorageLocation(*S->getArg(0), SkipPast::Reference);
if (ArgLoc == nullptr)
return;
Env.setStorageLocation(*S, *ArgLoc);
} else if (const FunctionDecl *F = S->getDirectCallee()) {
transferInlineCall(S, F);
}
}
void VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *S) {
const Expr *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
auto *SubExprLoc = Env.getStorageLocation(*SubExpr, SkipPast::None);
if (SubExprLoc == nullptr)
return;
Env.setStorageLocation(*S, *SubExprLoc);
}
void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *S) {
const Expr *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
auto *SubExprLoc = Env.getStorageLocation(*SubExpr, SkipPast::None);
if (SubExprLoc == nullptr)
return;
Env.setStorageLocation(*S, *SubExprLoc);
}
void VisitCXXStaticCastExpr(const CXXStaticCastExpr *S) {
if (S->getCastKind() == CK_NoOp) {
const Expr *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
auto *SubExprLoc = Env.getStorageLocation(*SubExpr, SkipPast::None);
if (SubExprLoc == nullptr)
return;
Env.setStorageLocation(*S, *SubExprLoc);
}
}
void VisitConditionalOperator(const ConditionalOperator *S) {
// FIXME: Revisit this once flow conditions are added to the framework. For
// `a = b ? c : d` we can add `b => a == c && !b => a == d` to the flow
// condition.
auto &Loc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, Loc);
if (Value *Val = Env.createValue(S->getType()))
Env.setValue(Loc, *Val);
}
void VisitInitListExpr(const InitListExpr *S) {
QualType Type = S->getType();
auto &Loc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, Loc);
auto *Val = Env.createValue(Type);
if (Val == nullptr)
return;
Env.setValue(Loc, *Val);
if (Type->isStructureOrClassType()) {
for (auto It : llvm::zip(Type->getAsRecordDecl()->fields(), S->inits())) {
const FieldDecl *Field = std::get<0>(It);
assert(Field != nullptr);
const Expr *Init = std::get<1>(It);
assert(Init != nullptr);
if (Value *InitVal = Env.getValue(*Init, SkipPast::None))
cast<StructValue>(Val)->setChild(*Field, *InitVal);
}
}
// FIXME: Implement array initialization.
}
void VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *S) {
auto &Loc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, Loc);
Env.setValue(Loc, Env.getBoolLiteralValue(S->getValue()));
}
void VisitParenExpr(const ParenExpr *S) {
// The CFG does not contain `ParenExpr` as top-level statements in basic
// blocks, however manual traversal to sub-expressions may encounter them.
// Redirect to the sub-expression.
auto *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
Visit(SubExpr);
}
void VisitExprWithCleanups(const ExprWithCleanups *S) {
// The CFG does not contain `ExprWithCleanups` as top-level statements in
// basic blocks, however manual traversal to sub-expressions may encounter
// them. Redirect to the sub-expression.
auto *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
Visit(SubExpr);
}
private:
BoolValue &getLogicOperatorSubExprValue(const Expr &SubExpr) {
// `SubExpr` and its parent logic operator might be part of different basic
// blocks. We try to access the value that is assigned to `SubExpr` in the
// corresponding environment.
if (const Environment *SubExprEnv = StmtToEnv.getEnvironment(SubExpr)) {
if (auto *Val = dyn_cast_or_null<BoolValue>(
SubExprEnv->getValue(SubExpr, SkipPast::Reference)))
return *Val;
}
if (Env.getStorageLocation(SubExpr, SkipPast::None) == nullptr) {
// Sub-expressions that are logic operators are not added in basic blocks
// (e.g. see CFG for `bool d = a && (b || c);`). If `SubExpr` is a logic
// operator, it may not have been evaluated and assigned a value yet. In
// that case, we need to first visit `SubExpr` and then try to get the
// value that gets assigned to it.
Visit(&SubExpr);
}
if (auto *Val = dyn_cast_or_null<BoolValue>(
Env.getValue(SubExpr, SkipPast::Reference)))
return *Val;
// If the value of `SubExpr` is still unknown, we create a fresh symbolic
// boolean value for it.
return Env.makeAtomicBoolValue();
}
// If context sensitivity is enabled, try to analyze the body of the callee
// `F` of `S`. The type `E` must be either `CallExpr` or `CXXConstructExpr`.
template <typename E>
void transferInlineCall(const E *S, const FunctionDecl *F) {
const auto &Options = Env.getAnalysisOptions();
if (!(Options.ContextSensitiveOpts &&
Env.canDescend(Options.ContextSensitiveOpts->Depth, F)))
return;
const ControlFlowContext *CFCtx = Env.getControlFlowContext(F);
if (!CFCtx)
return;
// FIXME: We don't support context-sensitive analysis of recursion, so
// we should return early here if `F` is the same as the `FunctionDecl`
// holding `S` itself.
auto ExitBlock = CFCtx->getCFG().getExit().getBlockID();
if (const auto *NonConstructExpr = dyn_cast<CallExpr>(S)) {
// Note that it is important for the storage location of `S` to be set
// before `pushCall`, because the latter uses it to set the storage
// location for `return`.
auto &ReturnLoc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, ReturnLoc);
}
auto CalleeEnv = Env.pushCall(S);
// FIXME: Use the same analysis as the caller for the callee. Note,
// though, that doing so would require support for changing the analysis's
// ASTContext.
assert(CFCtx->getDecl() != nullptr &&
"ControlFlowContexts in the environment should always carry a decl");
auto Analysis = NoopAnalysis(CFCtx->getDecl()->getASTContext(),
DataflowAnalysisOptions{Options});
auto BlockToOutputState =
dataflow::runDataflowAnalysis(*CFCtx, Analysis, CalleeEnv);
assert(BlockToOutputState);
assert(ExitBlock < BlockToOutputState->size());
auto ExitState = (*BlockToOutputState)[ExitBlock];
assert(ExitState);
Env.popCall(ExitState->Env);
}
const StmtToEnvMap &StmtToEnv;
Environment &Env;
};
void transfer(const StmtToEnvMap &StmtToEnv, const Stmt &S, Environment &Env) {
TransferVisitor(StmtToEnv, Env).Visit(&S);
}
} // namespace dataflow
} // namespace clang
|