1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
|
//===- UnsafeBufferUsage.cpp - Replace pointers with modern C++ -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/Analyses/UnsafeBufferUsage.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "llvm/ADT/SmallVector.h"
#include <memory>
#include <optional>
using namespace llvm;
using namespace clang;
using namespace ast_matchers;
namespace clang::ast_matchers {
// A `RecursiveASTVisitor` that traverses all descendants of a given node "n"
// except for those belonging to a different callable of "n".
class MatchDescendantVisitor
: public RecursiveASTVisitor<MatchDescendantVisitor> {
public:
typedef RecursiveASTVisitor<MatchDescendantVisitor> VisitorBase;
// Creates an AST visitor that matches `Matcher` on all
// descendants of a given node "n" except for the ones
// belonging to a different callable of "n".
MatchDescendantVisitor(const internal::DynTypedMatcher *Matcher,
internal::ASTMatchFinder *Finder,
internal::BoundNodesTreeBuilder *Builder,
internal::ASTMatchFinder::BindKind Bind)
: Matcher(Matcher), Finder(Finder), Builder(Builder), Bind(Bind),
Matches(false) {}
// Returns true if a match is found in a subtree of `DynNode`, which belongs
// to the same callable of `DynNode`.
bool findMatch(const DynTypedNode &DynNode) {
Matches = false;
if (const Stmt *StmtNode = DynNode.get<Stmt>()) {
TraverseStmt(const_cast<Stmt *>(StmtNode));
*Builder = ResultBindings;
return Matches;
}
return false;
}
// The following are overriding methods from the base visitor class.
// They are public only to allow CRTP to work. They are *not *part
// of the public API of this class.
// For the matchers so far used in safe buffers, we only need to match
// `Stmt`s. To override more as needed.
bool TraverseDecl(Decl *Node) {
if (!Node)
return true;
if (!match(*Node))
return false;
// To skip callables:
if (isa<FunctionDecl, BlockDecl, ObjCMethodDecl>(Node))
return true;
// Traverse descendants
return VisitorBase::TraverseDecl(Node);
}
bool TraverseStmt(Stmt *Node, DataRecursionQueue *Queue = nullptr) {
if (!Node)
return true;
if (!match(*Node))
return false;
// To skip callables:
if (isa<LambdaExpr>(Node))
return true;
return VisitorBase::TraverseStmt(Node);
}
bool shouldVisitTemplateInstantiations() const { return true; }
bool shouldVisitImplicitCode() const {
// TODO: let's ignore implicit code for now
return false;
}
private:
// Sets 'Matched' to true if 'Matcher' matches 'Node'
//
// Returns 'true' if traversal should continue after this function
// returns, i.e. if no match is found or 'Bind' is 'BK_All'.
template <typename T> bool match(const T &Node) {
internal::BoundNodesTreeBuilder RecursiveBuilder(*Builder);
if (Matcher->matches(DynTypedNode::create(Node), Finder,
&RecursiveBuilder)) {
ResultBindings.addMatch(RecursiveBuilder);
Matches = true;
if (Bind != internal::ASTMatchFinder::BK_All)
return false; // Abort as soon as a match is found.
}
return true;
}
const internal::DynTypedMatcher *const Matcher;
internal::ASTMatchFinder *const Finder;
internal::BoundNodesTreeBuilder *const Builder;
internal::BoundNodesTreeBuilder ResultBindings;
const internal::ASTMatchFinder::BindKind Bind;
bool Matches;
};
AST_MATCHER_P(Stmt, forEveryDescendant, internal::Matcher<Stmt>, innerMatcher) {
const DynTypedMatcher &DTM = static_cast<DynTypedMatcher>(innerMatcher);
MatchDescendantVisitor Visitor(&DTM, Finder, Builder, ASTMatchFinder::BK_All);
return Visitor.findMatch(DynTypedNode::create(Node));
}
} // namespace clang::ast_matchers
namespace {
// Because the analysis revolves around variables and their types, we'll need to
// track uses of variables (aka DeclRefExprs).
using DeclUseList = SmallVector<const DeclRefExpr *, 1>;
// Convenience typedef.
using FixItList = SmallVector<FixItHint, 4>;
// Defined below.
class Strategy;
} // namespace
// Because we're dealing with raw pointers, let's define what we mean by that.
static auto hasPointerType() {
return hasType(hasCanonicalType(pointerType()));
}
static auto hasArrayType() {
return hasType(hasCanonicalType(arrayType()));
}
namespace {
/// Gadget is an individual operation in the code that may be of interest to
/// this analysis. Each (non-abstract) subclass corresponds to a specific
/// rigid AST structure that constitutes an operation on a pointer-type object.
/// Discovery of a gadget in the code corresponds to claiming that we understand
/// what this part of code is doing well enough to potentially improve it.
/// Gadgets can be warning (immediately deserving a warning) or fixable (not
/// always deserving a warning per se, but requires our attention to identify
/// it warrants a fixit).
class Gadget {
public:
enum class Kind {
#define GADGET(x) x,
#include "clang/Analysis/Analyses/UnsafeBufferUsageGadgets.def"
};
/// Common type of ASTMatchers used for discovering gadgets.
/// Useful for implementing the static matcher() methods
/// that are expected from all non-abstract subclasses.
using Matcher = decltype(stmt());
Gadget(Kind K) : K(K) {}
Kind getKind() const { return K; }
virtual bool isWarningGadget() const = 0;
virtual const Stmt *getBaseStmt() const = 0;
/// Returns the list of pointer-type variables on which this gadget performs
/// its operation. Typically, there's only one variable. This isn't a list
/// of all DeclRefExprs in the gadget's AST!
virtual DeclUseList getClaimedVarUseSites() const = 0;
virtual ~Gadget() = default;
private:
Kind K;
};
/// Warning gadgets correspond to unsafe code patterns that warrants
/// an immediate warning.
class WarningGadget : public Gadget {
public:
WarningGadget(Kind K) : Gadget(K) {}
static bool classof(const Gadget *G) { return G->isWarningGadget(); }
bool isWarningGadget() const final { return true; }
};
/// Fixable gadgets correspond to code patterns that aren't always unsafe but need to be
/// properly recognized in order to emit fixes. For example, if a raw pointer-type
/// variable is replaced by a safe C++ container, every use of such variable must be
/// carefully considered and possibly updated.
class FixableGadget : public Gadget {
public:
FixableGadget(Kind K) : Gadget(K) {}
static bool classof(const Gadget *G) { return !G->isWarningGadget(); }
bool isWarningGadget() const final { return false; }
/// Returns a fixit that would fix the current gadget according to
/// the current strategy. Returns None if the fix cannot be produced;
/// returns an empty list if no fixes are necessary.
virtual std::optional<FixItList> getFixits(const Strategy &) const {
return std::nullopt;
}
};
using FixableGadgetList = std::vector<std::unique_ptr<FixableGadget>>;
using WarningGadgetList = std::vector<std::unique_ptr<WarningGadget>>;
/// An increment of a pointer-type value is unsafe as it may run the pointer
/// out of bounds.
class IncrementGadget : public WarningGadget {
static constexpr const char *const OpTag = "op";
const UnaryOperator *Op;
public:
IncrementGadget(const MatchFinder::MatchResult &Result)
: WarningGadget(Kind::Increment),
Op(Result.Nodes.getNodeAs<UnaryOperator>(OpTag)) {}
static bool classof(const Gadget *G) {
return G->getKind() == Kind::Increment;
}
static Matcher matcher() {
return stmt(unaryOperator(
hasOperatorName("++"),
hasUnaryOperand(ignoringParenImpCasts(hasPointerType()))
).bind(OpTag));
}
const UnaryOperator *getBaseStmt() const override { return Op; }
DeclUseList getClaimedVarUseSites() const override {
SmallVector<const DeclRefExpr *, 2> Uses;
if (const auto *DRE =
dyn_cast<DeclRefExpr>(Op->getSubExpr()->IgnoreParenImpCasts())) {
Uses.push_back(DRE);
}
return std::move(Uses);
}
};
/// A decrement of a pointer-type value is unsafe as it may run the pointer
/// out of bounds.
class DecrementGadget : public WarningGadget {
static constexpr const char *const OpTag = "op";
const UnaryOperator *Op;
public:
DecrementGadget(const MatchFinder::MatchResult &Result)
: WarningGadget(Kind::Decrement),
Op(Result.Nodes.getNodeAs<UnaryOperator>(OpTag)) {}
static bool classof(const Gadget *G) {
return G->getKind() == Kind::Decrement;
}
static Matcher matcher() {
return stmt(unaryOperator(
hasOperatorName("--"),
hasUnaryOperand(ignoringParenImpCasts(hasPointerType()))
).bind(OpTag));
}
const UnaryOperator *getBaseStmt() const override { return Op; }
DeclUseList getClaimedVarUseSites() const override {
if (const auto *DRE =
dyn_cast<DeclRefExpr>(Op->getSubExpr()->IgnoreParenImpCasts())) {
return {DRE};
}
return {};
}
};
/// Array subscript expressions on raw pointers as if they're arrays. Unsafe as
/// it doesn't have any bounds checks for the array.
class ArraySubscriptGadget : public WarningGadget {
static constexpr const char *const ArraySubscrTag = "arraySubscr";
const ArraySubscriptExpr *ASE;
public:
ArraySubscriptGadget(const MatchFinder::MatchResult &Result)
: WarningGadget(Kind::ArraySubscript),
ASE(Result.Nodes.getNodeAs<ArraySubscriptExpr>(ArraySubscrTag)) {}
static bool classof(const Gadget *G) {
return G->getKind() == Kind::ArraySubscript;
}
static Matcher matcher() {
// FIXME: What if the index is integer literal 0? Should this be
// a safe gadget in this case?
// clang-format off
return stmt(arraySubscriptExpr(
hasBase(ignoringParenImpCasts(
anyOf(hasPointerType(), hasArrayType()))),
unless(hasIndex(integerLiteral(equals(0)))))
.bind(ArraySubscrTag));
// clang-format on
}
const ArraySubscriptExpr *getBaseStmt() const override { return ASE; }
DeclUseList getClaimedVarUseSites() const override {
if (const auto *DRE =
dyn_cast<DeclRefExpr>(ASE->getBase()->IgnoreParenImpCasts())) {
return {DRE};
}
return {};
}
};
/// A pointer arithmetic expression of one of the forms:
/// \code
/// ptr + n | n + ptr | ptr - n | ptr += n | ptr -= n
/// \endcode
class PointerArithmeticGadget : public WarningGadget {
static constexpr const char *const PointerArithmeticTag = "ptrAdd";
static constexpr const char *const PointerArithmeticPointerTag = "ptrAddPtr";
const BinaryOperator *PA; // pointer arithmetic expression
const Expr * Ptr; // the pointer expression in `PA`
public:
PointerArithmeticGadget(const MatchFinder::MatchResult &Result)
: WarningGadget(Kind::PointerArithmetic),
PA(Result.Nodes.getNodeAs<BinaryOperator>(PointerArithmeticTag)),
Ptr(Result.Nodes.getNodeAs<Expr>(PointerArithmeticPointerTag)) {}
static bool classof(const Gadget *G) {
return G->getKind() == Kind::PointerArithmetic;
}
static Matcher matcher() {
auto HasIntegerType = anyOf(
hasType(isInteger()), hasType(enumType()));
auto PtrAtRight = allOf(hasOperatorName("+"),
hasRHS(expr(hasPointerType()).bind(PointerArithmeticPointerTag)),
hasLHS(HasIntegerType));
auto PtrAtLeft = allOf(
anyOf(hasOperatorName("+"), hasOperatorName("-"),
hasOperatorName("+="), hasOperatorName("-=")),
hasLHS(expr(hasPointerType()).bind(PointerArithmeticPointerTag)),
hasRHS(HasIntegerType));
return stmt(binaryOperator(anyOf(PtrAtLeft, PtrAtRight)).bind(PointerArithmeticTag));
}
const Stmt *getBaseStmt() const override { return PA; }
DeclUseList getClaimedVarUseSites() const override {
if (const auto *DRE =
dyn_cast<DeclRefExpr>(Ptr->IgnoreParenImpCasts())) {
return {DRE};
}
return {};
}
// FIXME: pointer adding zero should be fine
//FIXME: this gadge will need a fix-it
};
} // namespace
namespace {
// An auxiliary tracking facility for the fixit analysis. It helps connect
// declarations to its and make sure we've covered all uses with our analysis
// before we try to fix the declaration.
class DeclUseTracker {
using UseSetTy = SmallSet<const DeclRefExpr *, 16>;
using DefMapTy = DenseMap<const VarDecl *, const DeclStmt *>;
// Allocate on the heap for easier move.
std::unique_ptr<UseSetTy> Uses{std::make_unique<UseSetTy>()};
DefMapTy Defs{};
public:
DeclUseTracker() = default;
DeclUseTracker(const DeclUseTracker &) = delete; // Let's avoid copies.
DeclUseTracker(DeclUseTracker &&) = default;
DeclUseTracker &operator=(DeclUseTracker &&) = default;
// Start tracking a freshly discovered DRE.
void discoverUse(const DeclRefExpr *DRE) { Uses->insert(DRE); }
// Stop tracking the DRE as it's been fully figured out.
void claimUse(const DeclRefExpr *DRE) {
assert(Uses->count(DRE) &&
"DRE not found or claimed by multiple matchers!");
Uses->erase(DRE);
}
// A variable is unclaimed if at least one use is unclaimed.
bool hasUnclaimedUses(const VarDecl *VD) const {
// FIXME: Can this be less linear? Maybe maintain a map from VDs to DREs?
return any_of(*Uses, [VD](const DeclRefExpr *DRE) {
return DRE->getDecl()->getCanonicalDecl() == VD->getCanonicalDecl();
});
}
void discoverDecl(const DeclStmt *DS) {
for (const Decl *D : DS->decls()) {
if (const auto *VD = dyn_cast<VarDecl>(D)) {
// FIXME: Assertion temporarily disabled due to a bug in
// ASTMatcher internal behavior in presence of GNU
// statement-expressions. We need to properly investigate this
// because it can screw up our algorithm in other ways.
// assert(Defs.count(VD) == 0 && "Definition already discovered!");
Defs[VD] = DS;
}
}
}
const DeclStmt *lookupDecl(const VarDecl *VD) const {
auto It = Defs.find(VD);
assert(It != Defs.end() && "Definition never discovered!");
return It->second;
}
};
} // namespace
namespace {
// Strategy is a map from variables to the way we plan to emit fixes for
// these variables. It is figured out gradually by trying different fixes
// for different variables depending on gadgets in which these variables
// participate.
class Strategy {
public:
enum class Kind {
Wontfix, // We don't plan to emit a fixit for this variable.
Span, // We recommend replacing the variable with std::span.
Iterator, // We recommend replacing the variable with std::span::iterator.
Array, // We recommend replacing the variable with std::array.
Vector // We recommend replacing the variable with std::vector.
};
private:
using MapTy = llvm::DenseMap<const VarDecl *, Kind>;
MapTy Map;
public:
Strategy() = default;
Strategy(const Strategy &) = delete; // Let's avoid copies.
Strategy(Strategy &&) = default;
void set(const VarDecl *VD, Kind K) {
Map[VD] = K;
}
Kind lookup(const VarDecl *VD) const {
auto I = Map.find(VD);
if (I == Map.end())
return Kind::Wontfix;
return I->second;
}
};
} // namespace
/// Scan the function and return a list of gadgets found with provided kits.
static std::tuple<FixableGadgetList, WarningGadgetList, DeclUseTracker> findGadgets(const Decl *D) {
struct GadgetFinderCallback : MatchFinder::MatchCallback {
FixableGadgetList FixableGadgets;
WarningGadgetList WarningGadgets;
DeclUseTracker Tracker;
void run(const MatchFinder::MatchResult &Result) override {
// In debug mode, assert that we've found exactly one gadget.
// This helps us avoid conflicts in .bind() tags.
#if NDEBUG
#define NEXT return
#else
[[maybe_unused]] int numFound = 0;
#define NEXT ++numFound
#endif
if (const auto *DRE = Result.Nodes.getNodeAs<DeclRefExpr>("any_dre")) {
Tracker.discoverUse(DRE);
NEXT;
}
if (const auto *DS = Result.Nodes.getNodeAs<DeclStmt>("any_ds")) {
Tracker.discoverDecl(DS);
NEXT;
}
// Figure out which matcher we've found, and call the appropriate
// subclass constructor.
// FIXME: Can we do this more logarithmically?
#define FIXABLE_GADGET(name) \
if (Result.Nodes.getNodeAs<Stmt>(#name)) { \
FixableGadgets.push_back(std::make_unique<name ## Gadget>(Result)); \
NEXT; \
}
#include "clang/Analysis/Analyses/UnsafeBufferUsageGadgets.def"
#define WARNING_GADGET(name) \
if (Result.Nodes.getNodeAs<Stmt>(#name)) { \
WarningGadgets.push_back(std::make_unique<name ## Gadget>(Result)); \
NEXT; \
}
#include "clang/Analysis/Analyses/UnsafeBufferUsageGadgets.def"
assert(numFound >= 1 && "Gadgets not found in match result!");
assert(numFound <= 1 && "Conflicting bind tags in gadgets!");
}
};
MatchFinder M;
GadgetFinderCallback CB;
// clang-format off
M.addMatcher(
stmt(forEveryDescendant(
stmt(anyOf(
// Add Gadget::matcher() for every gadget in the registry.
#define GADGET(x) \
x ## Gadget::matcher().bind(#x),
#include "clang/Analysis/Analyses/UnsafeBufferUsageGadgets.def"
// In parallel, match all DeclRefExprs so that to find out
// whether there are any uncovered by gadgets.
declRefExpr(anyOf(hasPointerType(), hasArrayType()),
to(varDecl())).bind("any_dre"),
// Also match DeclStmts because we'll need them when fixing
// their underlying VarDecls that otherwise don't have
// any backreferences to DeclStmts.
declStmt().bind("any_ds")
))
// FIXME: Idiomatically there should be a forCallable(equalsNode(D))
// here, to make sure that the statement actually belongs to the
// function and not to a nested function. However, forCallable uses
// ParentMap which can't be used before the AST is fully constructed.
// The original problem doesn't sound like it needs ParentMap though,
// maybe there's a more direct solution?
)),
&CB
);
// clang-format on
M.match(*D->getBody(), D->getASTContext());
// Gadgets "claim" variables they're responsible for. Once this loop finishes,
// the tracker will only track DREs that weren't claimed by any gadgets,
// i.e. not understood by the analysis.
for (const auto &G : CB.FixableGadgets) {
for (const auto *DRE : G->getClaimedVarUseSites()) {
CB.Tracker.claimUse(DRE);
}
}
return {std::move(CB.FixableGadgets), std::move(CB.WarningGadgets), std::move(CB.Tracker)};
}
struct WarningGadgetSets {
std::map<const VarDecl *, std::set<std::unique_ptr<WarningGadget>>> byVar;
// These Gadgets are not related to pointer variables (e. g. temporaries).
llvm::SmallVector<std::unique_ptr<WarningGadget>, 16> noVar;
};
static WarningGadgetSets
groupWarningGadgetsByVar(WarningGadgetList &&AllUnsafeOperations) {
WarningGadgetSets result;
// If some gadgets cover more than one
// variable, they'll appear more than once in the map.
for (auto &G : AllUnsafeOperations) {
DeclUseList ClaimedVarUseSites = G->getClaimedVarUseSites();
bool AssociatedWithVarDecl = false;
for (const DeclRefExpr *DRE : ClaimedVarUseSites) {
if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
result.byVar[VD].emplace(std::move(G));
AssociatedWithVarDecl = true;
}
}
if (!AssociatedWithVarDecl) {
result.noVar.emplace_back(std::move(G));
continue;
}
}
return result;
}
struct FixableGadgetSets {
std::map<const VarDecl *, std::set<std::unique_ptr<FixableGadget>>> byVar;
};
static FixableGadgetSets
groupFixablesByVar(FixableGadgetList &&AllFixableOperations) {
FixableGadgetSets FixablesForUnsafeVars;
for (auto &F : AllFixableOperations) {
DeclUseList DREs = F->getClaimedVarUseSites();
for (const DeclRefExpr *DRE : DREs) {
if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
FixablesForUnsafeVars.byVar[VD].emplace(std::move(F));
}
}
}
return FixablesForUnsafeVars;
}
static std::map<const VarDecl *, FixItList>
getFixIts(FixableGadgetSets &FixablesForUnsafeVars, const Strategy &S) {
std::map<const VarDecl *, FixItList> FixItsForVariable;
for (const auto &[VD, Fixables] : FixablesForUnsafeVars.byVar) {
// TODO fixVariable - fixit for the variable itself
bool ImpossibleToFix = false;
llvm::SmallVector<FixItHint, 16> FixItsForVD;
for (const auto &F : Fixables) {
llvm::Optional<FixItList> Fixits = F->getFixits(S);
if (!Fixits) {
ImpossibleToFix = true;
break;
} else {
const FixItList CorrectFixes = Fixits.value();
FixItsForVD.insert(FixItsForVD.end(), CorrectFixes.begin(),
CorrectFixes.end());
}
}
if (ImpossibleToFix)
FixItsForVariable.erase(VD);
else
FixItsForVariable[VD].insert(FixItsForVariable[VD].end(),
FixItsForVD.begin(), FixItsForVD.end());
}
return FixItsForVariable;
}
static Strategy
getNaiveStrategy(const llvm::SmallVectorImpl<const VarDecl *> &UnsafeVars) {
Strategy S;
for (const VarDecl *VD : UnsafeVars) {
S.set(VD, Strategy::Kind::Span);
}
return S;
}
void clang::checkUnsafeBufferUsage(const Decl *D,
UnsafeBufferUsageHandler &Handler) {
assert(D && D->getBody());
WarningGadgetSets UnsafeOps;
FixableGadgetSets FixablesForUnsafeVars;
DeclUseTracker Tracker;
{
auto [FixableGadgets, WarningGadgets, TrackerRes] = findGadgets(D);
UnsafeOps = groupWarningGadgetsByVar(std::move(WarningGadgets));
FixablesForUnsafeVars = groupFixablesByVar(std::move(FixableGadgets));
Tracker = std::move(TrackerRes);
}
// Filter out non-local vars and vars with unclaimed DeclRefExpr-s.
for (auto it = FixablesForUnsafeVars.byVar.cbegin();
it != FixablesForUnsafeVars.byVar.cend();) {
// FIXME: Support ParmVarDecl as well.
if (!it->first->isLocalVarDecl() || Tracker.hasUnclaimedUses(it->first)) {
it = FixablesForUnsafeVars.byVar.erase(it);
} else {
++it;
}
}
llvm::SmallVector<const VarDecl *, 16> UnsafeVars;
for (const auto &[VD, ignore] : FixablesForUnsafeVars.byVar)
UnsafeVars.push_back(VD);
Strategy NaiveStrategy = getNaiveStrategy(UnsafeVars);
std::map<const VarDecl *, FixItList> FixItsForVariable =
getFixIts(FixablesForUnsafeVars, NaiveStrategy);
// FIXME Detect overlapping FixIts.
for (const auto &G : UnsafeOps.noVar) {
Handler.handleUnsafeOperation(G->getBaseStmt(), /*IsRelatedToDecl=*/false);
}
for (const auto &[VD, WarningGadgets] : UnsafeOps.byVar) {
auto FixItsIt = FixItsForVariable.find(VD);
Handler.handleFixableVariable(VD, FixItsIt != FixItsForVariable.end()
? std::move(FixItsIt->second)
: FixItList{});
for (const auto &G : WarningGadgets) {
Handler.handleUnsafeOperation(G->getBaseStmt(), /*IsRelatedToDecl=*/true);
}
}
}
|