1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
// RUN: %clang_cc1 -triple arm-none-eabi -emit-llvm -o - %s | FileCheck %s
// RUN: %clang_cc1 -triple armeb-none-eabi -emit-llvm -o - %s | FileCheck %s
#include <stdarg.h>
// Obviously there's more than one way to implement va_arg. This test should at
// least prevent unintentional regressions caused by refactoring.
va_list the_list;
int simple_int(void) {
// CHECK-LABEL: define{{.*}} i32 @simple_int
return va_arg(the_list, int);
// CHECK: [[CUR:%[a-z0-9._]+]] = load ptr, ptr @the_list, align 4
// CHECK: [[NEXT:%[a-z0-9._]+]] = getelementptr inbounds i8, ptr [[CUR]], i32 4
// CHECK: store ptr [[NEXT]], ptr @the_list, align 4
// CHECK: [[RESULT:%[a-z0-9._]+]] = load i32, ptr [[CUR]]
// CHECK: ret i32 [[RESULT]]
}
struct bigstruct {
int a[10];
};
struct bigstruct simple_struct(void) {
// CHECK-LABEL: define{{.*}} void @simple_struct(ptr noalias sret(%struct.bigstruct) align 4 %agg.result)
return va_arg(the_list, struct bigstruct);
// CHECK: [[CUR:%[a-z0-9._]+]] = load ptr, ptr @the_list, align 4
// CHECK: [[NEXT:%[a-z0-9._]+]] = getelementptr inbounds i8, ptr [[CUR]], i32 40
// CHECK: store ptr [[NEXT]], ptr @the_list, align 4
// CHECK: call void @llvm.memcpy.p0.p0.i32(ptr align 4 %agg.result, ptr align 4 [[CUR]], i32 40, i1 false)
// CHECK: ret void
}
struct aligned_bigstruct {
float a;
long double b;
};
struct aligned_bigstruct simple_aligned_struct(void) {
// CHECK-LABEL: define{{.*}} void @simple_aligned_struct(ptr noalias sret(%struct.aligned_bigstruct) align 8 %agg.result)
return va_arg(the_list, struct aligned_bigstruct);
// CHECK: [[CUR:%[a-z0-9._]+]] = load ptr, ptr @the_list, align 4
// CHECK: [[CUR_INT:%[a-z0-9._]+]] = ptrtoint ptr [[CUR]] to i32
// CHECK: [[CUR_INT_ADD:%[a-z0-9._]+]] = add i32 [[CUR_INT]], 7
// CHECK: [[CUR_INT_ALIGNED:%[a-z0-9._]+]] = and i32 [[CUR_INT_ADD]], -8
// CHECK: [[CUR_ALIGNED:%[a-z0-9._]+]] = inttoptr i32 [[CUR_INT_ALIGNED]] to ptr
// CHECK: [[NEXT:%[a-z0-9._]+]] = getelementptr inbounds i8, ptr [[CUR_ALIGNED]], i32 16
// CHECK: store ptr [[NEXT]], ptr @the_list, align 4
// CHECK: call void @llvm.memcpy.p0.p0.i32(ptr align 8 %agg.result, ptr align 8 [[CUR_ALIGNED]], i32 16, i1 false)
// CHECK: ret void
}
double simple_double(void) {
// CHECK-LABEL: define{{.*}} double @simple_double
return va_arg(the_list, double);
// CHECK: [[CUR:%[a-z0-9._]+]] = load ptr, ptr @the_list, align 4
// CHECK: [[CUR_INT:%[a-z0-9._]+]] = ptrtoint ptr [[CUR]] to i32
// CHECK: [[CUR_INT_ADD:%[a-z0-9._]+]] = add i32 [[CUR_INT]], 7
// CHECK: [[CUR_INT_ALIGNED:%[a-z0-9._]+]] = and i32 [[CUR_INT_ADD]], -8
// CHECK: [[CUR_ALIGNED:%[a-z0-9._]+]] = inttoptr i32 [[CUR_INT_ALIGNED]] to ptr
// CHECK: [[NEXT:%[a-z0-9._]+]] = getelementptr inbounds i8, ptr [[CUR_ALIGNED]], i32 8
// CHECK: store ptr [[NEXT]], ptr @the_list, align 4
// CHECK: [[RESULT:%[a-z0-9._]+]] = load double, ptr [[CUR_ALIGNED]]
// CHECK: ret double [[RESULT]]
}
struct hfa {
float a, b;
};
struct hfa simple_hfa(void) {
// CHECK-LABEL: define{{.*}} void @simple_hfa(ptr noalias sret(%struct.hfa) align 4 %agg.result)
return va_arg(the_list, struct hfa);
// CHECK: [[CUR:%[a-z0-9._]+]] = load ptr, ptr @the_list, align 4
// CHECK: [[NEXT:%[a-z0-9._]+]] = getelementptr inbounds i8, ptr [[CUR]], i32 8
// CHECK: store ptr [[NEXT]], ptr @the_list, align 4
// CHECK: call void @llvm.memcpy.p0.p0.i32(ptr align 4 %agg.result, ptr align 4 [[CUR]], i32 8, i1 false)
// CHECK: ret void
}
// Over and under alignment on fundamental types has no effect on parameter
// passing, so the code generated for va_arg should be the same as for
// non-aligned fundamental types.
typedef int underaligned_int __attribute__((packed,aligned(2)));
underaligned_int underaligned_int_test(void) {
// CHECK-LABEL: define{{.*}} i32 @underaligned_int_test()
return va_arg(the_list, underaligned_int);
// CHECK: [[CUR:%[a-z0-9._]+]] = load ptr, ptr @the_list, align 4
// CHECK: [[NEXT:%[a-z0-9._]+]] = getelementptr inbounds i8, ptr [[CUR]], i32 4
// CHECK: store ptr [[NEXT]], ptr @the_list, align 4
// CHECK: [[RESULT:%[a-z0-9._]+]] = load i32, ptr [[CUR]]
// CHECK: ret i32 [[RESULT]]
}
typedef int overaligned_int __attribute__((aligned(32)));
overaligned_int overaligned_int_test(void) {
// CHECK-LABEL: define{{.*}} i32 @overaligned_int_test()
return va_arg(the_list, overaligned_int);
// CHECK: [[CUR:%[a-z0-9._]+]] = load ptr, ptr @the_list, align 4
// CHECK: [[NEXT:%[a-z0-9._]+]] = getelementptr inbounds i8, ptr [[CUR]], i32 4
// CHECK: store ptr [[NEXT]], ptr @the_list, align 4
// CHECK: [[RESULT:%[a-z0-9._]+]] = load i32, ptr [[CUR]]
// CHECK: ret i32 [[RESULT]]
}
typedef long long underaligned_long_long __attribute__((packed,aligned(2)));
underaligned_long_long underaligned_long_long_test(void) {
// CHECK-LABEL: define{{.*}} i64 @underaligned_long_long_test()
return va_arg(the_list, underaligned_long_long);
// CHECK: [[CUR:%[a-z0-9._]+]] = load ptr, ptr @the_list, align 4
// CHECK: [[CUR_INT:%[a-z0-9._]+]] = ptrtoint ptr [[CUR]] to i32
// CHECK: [[CUR_INT_ADD:%[a-z0-9._]+]] = add i32 [[CUR_INT]], 7
// CHECK: [[CUR_INT_ALIGNED:%[a-z0-9._]+]] = and i32 [[CUR_INT_ADD]], -8
// CHECK: [[CUR_ALIGNED:%[a-z0-9._]+]] = inttoptr i32 [[CUR_INT_ALIGNED]] to ptr
// CHECK: [[NEXT:%[a-z0-9._]+]] = getelementptr inbounds i8, ptr [[CUR_ALIGNED]], i32 8
// CHECK: store ptr [[NEXT]], ptr @the_list, align 4
// CHECK: [[RESULT:%[a-z0-9._]+]] = load i64, ptr [[CUR_ALIGNED]]
// CHECK: ret i64 [[RESULT]]
}
typedef long long overaligned_long_long __attribute__((aligned(32)));
overaligned_long_long overaligned_long_long_test(void) {
// CHECK-LABEL: define{{.*}} i64 @overaligned_long_long_test()
return va_arg(the_list, overaligned_long_long);
// CHECK: [[CUR:%[a-z0-9._]+]] = load ptr, ptr @the_list, align 4
// CHECK: [[CUR_INT:%[a-z0-9._]+]] = ptrtoint ptr [[CUR]] to i32
// CHECK: [[CUR_INT_ADD:%[a-z0-9._]+]] = add i32 [[CUR_INT]], 7
// CHECK: [[CUR_INT_ALIGNED:%[a-z0-9._]+]] = and i32 [[CUR_INT_ADD]], -8
// CHECK: [[CUR_ALIGNED:%[a-z0-9._]+]] = inttoptr i32 [[CUR_INT_ALIGNED]] to ptr
// CHECK: [[NEXT:%[a-z0-9._]+]] = getelementptr inbounds i8, ptr [[CUR_ALIGNED]], i32 8
// CHECK: store ptr [[NEXT]], ptr @the_list, align 4
// CHECK: [[RESULT:%[a-z0-9._]+]] = load i64, ptr [[CUR_ALIGNED]]
// CHECK: ret i64 [[RESULT]]
}
// The way that attributes applied to a struct change parameter passing is a
// little strange, in that the alignment due to attributes is used when
// calculating the size of the struct, but the alignment is based only on the
// alignment of the members (which can be affected by attributes). What this
// means is:
// * The only effect of the aligned attribute on a struct is to increase its
// size if the alignment is greater than the member alignment.
// * The packed attribute is considered as applying to the members, so it will
// affect the alignment.
// Additionally the alignment can't go below 4 or above 8, so it's only
// long long and double that can be affected by a change in alignment.
typedef struct __attribute__((packed,aligned(2))) {
int val;
} underaligned_int_struct;
underaligned_int_struct underaligned_int_struct_test(void) {
// CHECK-LABEL: define{{.*}} i32 @underaligned_int_struct_test()
return va_arg(the_list, underaligned_int_struct);
// CHECK: [[RETVAL:%[a-z0-9._]+]] = alloca %struct.underaligned_int_struct, align 2
// CHECK: [[CUR:%[a-z0-9._]+]] = load ptr, ptr @the_list, align 4
// CHECK: [[NEXT:%[a-z0-9._]+]] = getelementptr inbounds i8, ptr [[CUR]], i32 4
// CHECK: store ptr [[NEXT]], ptr @the_list, align 4
// CHECK: call void @llvm.memcpy.p0.p0.i32(ptr align 2 [[RETVAL]], ptr align 4 [[CUR]], i32 4, i1 false)
// CHECK: [[COERCE:%[a-z0-9._]+]] = getelementptr inbounds %struct.underaligned_int_struct, ptr [[RETVAL]], i32 0, i32 0
// CHECK: [[RESULT:%[a-z0-9._]+]] = load i32, ptr [[COERCE]]
// CHECK: ret i32 [[RESULT]]
}
typedef struct __attribute__((aligned(16))) {
int val;
} overaligned_int_struct;
overaligned_int_struct overaligned_int_struct_test(void) {
// CHECK-LABEL: define{{.*}} void @overaligned_int_struct_test(ptr noalias sret(%struct.overaligned_int_struct) align 16 %agg.result)
return va_arg(the_list, overaligned_int_struct);
// CHECK: [[CUR:%[a-z0-9._]+]] = load ptr, ptr @the_list, align 4
// CHECK: [[NEXT:%[a-z0-9._]+]] = getelementptr inbounds i8, ptr [[CUR]], i32 16
// CHECK: store ptr [[NEXT]], ptr @the_list, align 4
// CHECK: call void @llvm.memcpy.p0.p0.i32(ptr align 16 %agg.result, ptr align 4 [[CUR]], i32 16, i1 false)
// CHECK: ret void
}
typedef struct __attribute__((packed,aligned(2))) {
long long val;
} underaligned_long_long_struct;
underaligned_long_long_struct underaligned_long_long_struct_test(void) {
// CHECK-LABEL: define{{.*}} void @underaligned_long_long_struct_test(ptr noalias sret(%struct.underaligned_long_long_struct) align 2 %agg.result)
return va_arg(the_list, underaligned_long_long_struct);
// CHECK: [[CUR:%[a-z0-9._]+]] = load ptr, ptr @the_list, align 4
// CHECK: [[NEXT:%[a-z0-9._]+]] = getelementptr inbounds i8, ptr [[CUR]], i32 8
// CHECK: store ptr [[NEXT]], ptr @the_list, align 4
// CHECK: call void @llvm.memcpy.p0.p0.i32(ptr align 2 %agg.result, ptr align 4 [[CUR]], i32 8, i1 false)
// CHECK: ret void
}
typedef struct __attribute__((aligned(16))) {
long long val;
} overaligned_long_long_struct;
overaligned_long_long_struct overaligned_long_long_struct_test(void) {
// CHECK-LABEL: define{{.*}} void @overaligned_long_long_struct_test(ptr noalias sret(%struct.overaligned_long_long_struct) align 16 %agg.result)
return va_arg(the_list, overaligned_long_long_struct);
// CHECK: [[CUR:%[a-z0-9._]+]] = load ptr, ptr @the_list, align 4
// CHECK: [[CUR_INT:%[a-z0-9._]+]] = ptrtoint ptr [[CUR]] to i32
// CHECK: [[CUR_INT_ADD:%[a-z0-9._]+]] = add i32 [[CUR_INT]], 7
// CHECK: [[CUR_INT_ALIGNED:%[a-z0-9._]+]] = and i32 [[CUR_INT_ADD]], -8
// CHECK: [[CUR_ALIGNED:%[a-z0-9._]+]] = inttoptr i32 [[CUR_INT_ALIGNED]] to ptr
// CHECK: [[NEXT:%[a-z0-9._]+]] = getelementptr inbounds i8, ptr [[CUR_ALIGNED]], i32 16
// CHECK: store ptr [[NEXT]], ptr @the_list, align 4
// CHECK: call void @llvm.memcpy.p0.p0.i32(ptr align 16 %agg.result, ptr align 8 [[CUR_ALIGNED]], i32 16, i1 false)
// CHECK: ret void
}
// Overaligning or underaligning a struct member changes both its alignment and
// size when passed as an argument.
typedef struct {
int val __attribute__((packed,aligned(2)));
} underaligned_int_struct_member;
underaligned_int_struct_member underaligned_int_struct_member_test(void) {
// CHECK-LABEL: define{{.*}} i32 @underaligned_int_struct_member_test()
return va_arg(the_list, underaligned_int_struct_member);
// CHECK: [[RETVAL:%[a-z0-9._]+]] = alloca %struct.underaligned_int_struct_member, align 2
// CHECK: [[CUR:%[a-z0-9._]+]] = load ptr, ptr @the_list, align 4
// CHECK: [[NEXT:%[a-z0-9._]+]] = getelementptr inbounds i8, ptr [[CUR]], i32 4
// CHECK: store ptr [[NEXT]], ptr @the_list, align 4
// CHECK: call void @llvm.memcpy.p0.p0.i32(ptr align 2 [[RETVAL]], ptr align 4 [[CUR]], i32 4, i1 false)
// CHECK: [[COERCE:%[a-z0-9._]+]] = getelementptr inbounds %struct.underaligned_int_struct_member, ptr [[RETVAL]], i32 0, i32 0
// CHECK: [[RESULT:%[a-z0-9._]+]] = load i32, ptr [[COERCE]]
// CHECK: ret i32 [[RESULT]]
}
typedef struct {
int val __attribute__((aligned(16)));
} overaligned_int_struct_member;
overaligned_int_struct_member overaligned_int_struct_member_test(void) {
// CHECK-LABEL: define{{.*}} void @overaligned_int_struct_member_test(ptr noalias sret(%struct.overaligned_int_struct_member) align 16 %agg.result)
return va_arg(the_list, overaligned_int_struct_member);
// CHECK: [[CUR:%[a-z0-9._]+]] = load ptr, ptr @the_list, align 4
// CHECK: [[CUR_INT:%[a-z0-9._]+]] = ptrtoint ptr [[CUR]] to i32
// CHECK: [[CUR_INT_ADD:%[a-z0-9._]+]] = add i32 [[CUR_INT]], 7
// CHECK: [[CUR_INT_ALIGNED:%[a-z0-9._]+]] = and i32 [[CUR_INT_ADD]], -8
// CHECK: [[CUR_ALIGNED:%[a-z0-9._]+]] = inttoptr i32 [[CUR_INT_ALIGNED]] to ptr
// CHECK: [[NEXT:%[a-z0-9._]+]] = getelementptr inbounds i8, ptr [[CUR_ALIGNED]], i32 16
// CHECK: store ptr [[NEXT]], ptr @the_list, align 4
// CHECK: call void @llvm.memcpy.p0.p0.i32(ptr align 16 %agg.result, ptr align 8 [[CUR_ALIGNED]], i32 16, i1 false)
// CHECK: ret void
}
typedef struct {
long long val __attribute__((packed,aligned(2)));
} underaligned_long_long_struct_member;
underaligned_long_long_struct_member underaligned_long_long_struct_member_test(void) {
// CHECK-LABEL: define{{.*}} void @underaligned_long_long_struct_member_test(ptr noalias sret(%struct.underaligned_long_long_struct_member) align 2 %agg.result)
return va_arg(the_list, underaligned_long_long_struct_member);
// CHECK: [[CUR:%[a-z0-9._]+]] = load ptr, ptr @the_list, align 4
// CHECK: [[NEXT:%[a-z0-9._]+]] = getelementptr inbounds i8, ptr [[CUR]], i32 8
// CHECK: store ptr [[NEXT]], ptr @the_list, align 4
// CHECK: call void @llvm.memcpy.p0.p0.i32(ptr align 2 %agg.result, ptr align 4 [[CUR]], i32 8, i1 false)
// CHECK: ret void
}
typedef struct {
long long val __attribute__((aligned(16)));
} overaligned_long_long_struct_member;
overaligned_long_long_struct_member overaligned_long_long_struct_member_test(void) {
// CHECK-LABEL: define{{.*}} void @overaligned_long_long_struct_member_test(ptr noalias sret(%struct.overaligned_long_long_struct_member) align 16 %agg.result)
return va_arg(the_list, overaligned_long_long_struct_member);
// CHECK: [[CUR:%[a-z0-9._]+]] = load ptr, ptr @the_list, align 4
// CHECK: [[CUR_INT:%[a-z0-9._]+]] = ptrtoint ptr [[CUR]] to i32
// CHECK: [[CUR_INT_ADD:%[a-z0-9._]+]] = add i32 [[CUR_INT]], 7
// CHECK: [[CUR_INT_ALIGNED:%[a-z0-9._]+]] = and i32 [[CUR_INT_ADD]], -8
// CHECK: [[CUR_ALIGNED:%[a-z0-9._]+]] = inttoptr i32 [[CUR_INT_ALIGNED]] to ptr
// CHECK: [[NEXT:%[a-z0-9._]+]] = getelementptr inbounds i8, ptr [[CUR_ALIGNED]], i32 16
// CHECK: store ptr [[NEXT]], ptr @the_list, align 4
// CHECK: call void @llvm.memcpy.p0.p0.i32(ptr align 16 %agg.result, ptr align 8 [[CUR_ALIGNED]], i32 16, i1 false)
// CHECK: ret void
}
void check_start(int n, ...) {
// CHECK-LABEL: define{{.*}} void @check_start(i32 noundef %n, ...)
va_list the_list;
va_start(the_list, n);
// CHECK: [[THE_LIST:%[a-z0-9._]+]] = alloca %struct.__va_list
// CHECK: call void @llvm.va_start(ptr [[THE_LIST]])
}
|