File: gen-regalloc-priority-test-model.py

package info (click to toggle)
llvm-toolchain-16 1%3A16.0.6-15~deb11u2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,634,820 kB
  • sloc: cpp: 6,179,261; ansic: 1,216,205; asm: 741,319; python: 196,614; objc: 75,325; f90: 49,640; lisp: 32,396; pascal: 12,286; sh: 9,394; perl: 7,442; ml: 5,494; awk: 3,523; makefile: 2,723; javascript: 1,206; xml: 886; fortran: 581; cs: 573
file content (95 lines) | stat: -rw-r--r-- 2,880 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
"""Generate a mock model for LLVM tests for Register Allocation.
The generated model is not a neural net - it is just a tf.function with the
correct input and output parameters. 
"""
## By construction, the mock model will always output the first liverange that can be evicted.

import os
import sys
import tensorflow as tf
POLICY_DECISION_LABEL = 'priority'
POLICY_OUTPUT_SPEC = """
[
    {
        "logging_name": "priority", 
        "tensor_spec": {
            "name": "StatefulPartitionedCall", 
            "port": 0, 
            "type": "float", 
            "shape": [
                1
            ]
        }
    }
]
"""
PER_LIVEINTERVAL_INT64_FEATURE_LIST = [
    'li_size', 'stage'
]
PER_LIVEINTERVAL_FLOAT32_FEATURE_LIST = ['weight'
]
PER_LIVEINTERVAL_FEATURE_LIST = PER_LIVEINTERVAL_FLOAT32_FEATURE_LIST + \
    PER_LIVEINTERVAL_INT64_FEATURE_LIST
CONTEXT_FEATURE_LIST =  ('discount', 'reward', 'step_type')


def get_input_signature():
   """Returns (time_step_spec, action_spec) for LLVM register allocation."""
   inputs = dict(
       (key, tf.TensorSpec(dtype=tf.int64, shape=(), name=key))
       for key in PER_LIVEINTERVAL_INT64_FEATURE_LIST)
   inputs.update(
       dict((key,
             tf.TensorSpec(dtype=tf.float32, shape=(), name=key))
            for key in PER_LIVEINTERVAL_FLOAT32_FEATURE_LIST))
   inputs.update(
       dict((key, tf.TensorSpec(dtype=tf.float32, shape=(), name=key))
            for key in ['discount', 'reward']))
   inputs.update(
       dict((key, tf.TensorSpec(dtype=tf.int32, shape=(), name=key))
            for key in ['step_type']))
   return inputs


def get_output_spec_path(path):
   return os.path.join(path, 'output_spec.json')


def build_mock_model(path):
   """Build and save the mock model with the given signature."""
   module = tf.Module()
   # We have to set this useless variable in order for the TF C API to correctly
   # intake it
   module.var = tf.Variable(0, dtype=tf.float32)

   def action(*inputs):
     s1 = tf.reduce_sum([
         tf.cast(inputs[0][key], tf.float32) for key in PER_LIVEINTERVAL_FEATURE_LIST
     ],
         axis=0)
     s2 = tf.reduce_sum(
         [tf.cast(inputs[0][key], tf.float32) for key in CONTEXT_FEATURE_LIST])
     # Add a large number so s won't be 0.
     s = s1 + s2
     result = s + module.var
     return {POLICY_DECISION_LABEL: result}
   module.action = tf.function()(action)
   action = {
       'action': module.action.get_concrete_function(get_input_signature())
   }

   tf.saved_model.save(module, path, signatures=action)
   output_spec_path = get_output_spec_path(path)
   with open(output_spec_path, 'w') as f:
     print(f'Writing output spec to {output_spec_path}.')
     f.write(POLICY_OUTPUT_SPEC)


def main(argv):
   assert len(argv) == 2
   model_path = argv[1]
   build_mock_model(model_path)


if __name__ == '__main__':
   main(sys.argv)