1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
//===- llvm/unittest/Support/DivisionByConstantTest.cpp -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/APInt.h"
#include "llvm/Support/DivisionByConstantInfo.h"
#include "gtest/gtest.h"
#include <array>
#include <optional>
using namespace llvm;
namespace {
template <typename Fn> static void EnumerateAPInts(unsigned Bits, Fn TestFn) {
APInt N(Bits, 0);
do {
TestFn(N);
} while (++N != 0);
}
APInt MULHS(APInt X, APInt Y) {
unsigned Bits = X.getBitWidth();
unsigned WideBits = 2 * Bits;
return (X.sext(WideBits) * Y.sext(WideBits)).lshr(Bits).trunc(Bits);
}
APInt SignedDivideUsingMagic(APInt Numerator, APInt Divisor,
SignedDivisionByConstantInfo Magics) {
unsigned Bits = Numerator.getBitWidth();
APInt Factor(Bits, 0);
APInt ShiftMask(Bits, -1);
if (Divisor.isOne() || Divisor.isAllOnes()) {
// If d is +1/-1, we just multiply the numerator by +1/-1.
Factor = Divisor.getSExtValue();
Magics.Magic = 0;
Magics.ShiftAmount = 0;
ShiftMask = 0;
} else if (Divisor.isStrictlyPositive() && Magics.Magic.isNegative()) {
// If d > 0 and m < 0, add the numerator.
Factor = 1;
} else if (Divisor.isNegative() && Magics.Magic.isStrictlyPositive()) {
// If d < 0 and m > 0, subtract the numerator.
Factor = -1;
}
// Multiply the numerator by the magic value.
APInt Q = MULHS(Numerator, Magics.Magic);
// (Optionally) Add/subtract the numerator using Factor.
Factor = Numerator * Factor;
Q = Q + Factor;
// Shift right algebraic by shift value.
Q = Q.ashr(Magics.ShiftAmount);
// Extract the sign bit, mask it and add it to the quotient.
unsigned SignShift = Bits - 1;
APInt T = Q.lshr(SignShift);
T = T & ShiftMask;
return Q + T;
}
TEST(SignedDivisionByConstantTest, Test) {
for (unsigned Bits = 1; Bits <= 32; ++Bits) {
if (Bits < 3)
continue; // Not supported by `SignedDivisionByConstantInfo::get()`.
if (Bits > 12)
continue; // Unreasonably slow.
EnumerateAPInts(Bits, [Bits](const APInt &Divisor) {
if (Divisor.isZero())
return; // Division by zero is undefined behavior.
SignedDivisionByConstantInfo Magics;
if (!(Divisor.isOne() || Divisor.isAllOnes()))
Magics = SignedDivisionByConstantInfo::get(Divisor);
EnumerateAPInts(Bits, [Divisor, Magics, Bits](const APInt &Numerator) {
if (Numerator.isMinSignedValue() && Divisor.isAllOnes())
return; // Overflow is undefined behavior.
APInt NativeResult = Numerator.sdiv(Divisor);
APInt MagicResult = SignedDivideUsingMagic(Numerator, Divisor, Magics);
ASSERT_EQ(MagicResult, NativeResult)
<< " ... given the operation: srem i" << Bits << " " << Numerator
<< ", " << Divisor;
});
});
}
}
APInt MULHU(APInt X, APInt Y) {
unsigned Bits = X.getBitWidth();
unsigned WideBits = 2 * Bits;
return (X.zext(WideBits) * Y.zext(WideBits)).lshr(Bits).trunc(Bits);
}
APInt UnsignedDivideUsingMagic(const APInt &Numerator, const APInt &Divisor,
bool LZOptimization,
bool AllowEvenDivisorOptimization, bool ForceNPQ,
UnsignedDivisionByConstantInfo Magics) {
assert(!Divisor.isOne() && "Division by 1 is not supported using Magic.");
unsigned Bits = Numerator.getBitWidth();
if (LZOptimization) {
unsigned LeadingZeros = Numerator.countLeadingZeros();
// Clip to the number of leading zeros in the divisor.
LeadingZeros = std::min(LeadingZeros, Divisor.countLeadingZeros());
if (LeadingZeros > 0) {
Magics = UnsignedDivisionByConstantInfo::get(
Divisor, LeadingZeros, AllowEvenDivisorOptimization);
assert(!Magics.IsAdd && "Should use cheap fixup now");
}
}
assert(Magics.PreShift < Divisor.getBitWidth() &&
"We shouldn't generate an undefined shift!");
assert(Magics.PostShift < Divisor.getBitWidth() &&
"We shouldn't generate an undefined shift!");
assert((!Magics.IsAdd || Magics.PreShift == 0) && "Unexpected pre-shift");
unsigned PreShift = Magics.PreShift;
unsigned PostShift = Magics.PostShift;
bool UseNPQ = Magics.IsAdd;
APInt NPQFactor =
UseNPQ ? APInt::getSignedMinValue(Bits) : APInt::getZero(Bits);
APInt Q = Numerator.lshr(PreShift);
// Multiply the numerator by the magic value.
Q = MULHU(Q, Magics.Magic);
if (UseNPQ || ForceNPQ) {
APInt NPQ = Numerator - Q;
// For vectors we might have a mix of non-NPQ/NPQ paths, so use
// MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
APInt NPQ_Scalar = NPQ.lshr(1);
(void)NPQ_Scalar;
NPQ = MULHU(NPQ, NPQFactor);
assert(!UseNPQ || NPQ == NPQ_Scalar);
Q = NPQ + Q;
}
Q = Q.lshr(PostShift);
return Q;
}
TEST(UnsignedDivisionByConstantTest, Test) {
for (unsigned Bits = 1; Bits <= 32; ++Bits) {
if (Bits < 2)
continue; // Not supported by `UnsignedDivisionByConstantInfo::get()`.
if (Bits > 10)
continue; // Unreasonably slow.
EnumerateAPInts(Bits, [Bits](const APInt &Divisor) {
if (Divisor.isZero())
return; // Division by zero is undefined behavior.
if (Divisor.isOne())
return; // Division by one is the numerator.
const UnsignedDivisionByConstantInfo Magics =
UnsignedDivisionByConstantInfo::get(Divisor);
EnumerateAPInts(Bits, [Divisor, Magics, Bits](const APInt &Numerator) {
APInt NativeResult = Numerator.udiv(Divisor);
for (bool LZOptimization : {true, false}) {
for (bool AllowEvenDivisorOptimization : {true, false}) {
for (bool ForceNPQ : {false, true}) {
APInt MagicResult = UnsignedDivideUsingMagic(
Numerator, Divisor, LZOptimization,
AllowEvenDivisorOptimization, ForceNPQ, Magics);
ASSERT_EQ(MagicResult, NativeResult)
<< " ... given the operation: urem i" << Bits << " "
<< Numerator << ", " << Divisor
<< " (allow LZ optimization = "
<< LZOptimization << ", allow even divisior optimization = "
<< AllowEvenDivisorOptimization << ", force NPQ = "
<< ForceNPQ << ")";
}
}
}
});
});
}
}
} // end anonymous namespace
|