1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
#!/usr/bin/env python3
"""A shuffle vector fuzz tester.
This is a python program to fuzz test the LLVM shufflevector instruction. It
generates a function with a random sequnece of shufflevectors, maintaining the
element mapping accumulated across the function. It then generates a main
function which calls it with a different value in each element and checks that
the result matches the expected mapping.
Take the output IR printed to stdout, compile it to an executable using whatever
set of transforms you want to test, and run the program. If it crashes, it found
a bug.
"""
from __future__ import print_function
import argparse
import itertools
import random
import sys
import uuid
def main():
element_types=['i8', 'i16', 'i32', 'i64', 'f32', 'f64']
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument('-v', '--verbose', action='store_true',
help='Show verbose output')
parser.add_argument('--seed', default=str(uuid.uuid4()),
help='A string used to seed the RNG')
parser.add_argument('--max-shuffle-height', type=int, default=16,
help='Specify a fixed height of shuffle tree to test')
parser.add_argument('--no-blends', dest='blends', action='store_false',
help='Include blends of two input vectors')
parser.add_argument('--fixed-bit-width', type=int, choices=[128, 256],
help='Specify a fixed bit width of vector to test')
parser.add_argument('--fixed-element-type', choices=element_types,
help='Specify a fixed element type to test')
parser.add_argument('--triple',
help='Specify a triple string to include in the IR')
args = parser.parse_args()
random.seed(args.seed)
if args.fixed_element_type is not None:
element_types=[args.fixed_element_type]
if args.fixed_bit_width is not None:
if args.fixed_bit_width == 128:
width_map={'i64': 2, 'i32': 4, 'i16': 8, 'i8': 16, 'f64': 2, 'f32': 4}
(width, element_type) = random.choice(
[(width_map[t], t) for t in element_types])
elif args.fixed_bit_width == 256:
width_map={'i64': 4, 'i32': 8, 'i16': 16, 'i8': 32, 'f64': 4, 'f32': 8}
(width, element_type) = random.choice(
[(width_map[t], t) for t in element_types])
else:
sys.exit(1) # Checked above by argument parsing.
else:
width = random.choice([2, 4, 8, 16, 32, 64])
element_type = random.choice(element_types)
element_modulus = {
'i8': 1 << 8, 'i16': 1 << 16, 'i32': 1 << 32, 'i64': 1 << 64,
'f32': 1 << 32, 'f64': 1 << 64}[element_type]
shuffle_range = (2 * width) if args.blends else width
# Because undef (-1) saturates and is indistinguishable when testing the
# correctness of a shuffle, we want to bias our fuzz toward having a decent
# mixture of non-undef lanes in the end. With a deep shuffle tree, the
# probabilies aren't good so we need to bias things. The math here is that if
# we uniformly select between -1 and the other inputs, each element of the
# result will have the following probability of being undef:
#
# 1 - (shuffle_range/(shuffle_range+1))^max_shuffle_height
#
# More generally, for any probability P of selecting a defined element in
# a single shuffle, the end result is:
#
# 1 - P^max_shuffle_height
#
# The power of the shuffle height is the real problem, as we want:
#
# 1 - shuffle_range/(shuffle_range+1)
#
# So we bias the selection of undef at any given node based on the tree
# height. Below, let 'A' be 'len(shuffle_range)', 'C' be 'max_shuffle_height',
# and 'B' be the bias we use to compensate for
# C '((A+1)*A^(1/C))/(A*(A+1)^(1/C))':
#
# 1 - (B * A)/(A + 1)^C = 1 - A/(A + 1)
#
# So at each node we use:
#
# 1 - (B * A)/(A + 1)
# = 1 - ((A + 1) * A * A^(1/C))/(A * (A + 1) * (A + 1)^(1/C))
# = 1 - ((A + 1) * A^((C + 1)/C))/(A * (A + 1)^((C + 1)/C))
#
# This is the formula we use to select undef lanes in the shuffle.
A = float(shuffle_range)
C = float(args.max_shuffle_height)
undef_prob = 1.0 - (((A + 1.0) * pow(A, (C + 1.0)/C)) /
(A * pow(A + 1.0, (C + 1.0)/C)))
shuffle_tree = [[[-1 if random.random() <= undef_prob
else random.choice(range(shuffle_range))
for _ in itertools.repeat(None, width)]
for _ in itertools.repeat(None, args.max_shuffle_height - i)]
for i in range(args.max_shuffle_height)]
if args.verbose:
# Print out the shuffle sequence in a compact form.
print(('Testing shuffle sequence "%s" (v%d%s):' %
(args.seed, width, element_type)), file=sys.stderr)
for i, shuffles in enumerate(shuffle_tree):
print(' tree level %d:' % (i,), file=sys.stderr)
for j, s in enumerate(shuffles):
print(' shuffle %d: %s' % (j, s), file=sys.stderr)
print('', file=sys.stderr)
# Symbolically evaluate the shuffle tree.
inputs = [[int(j % element_modulus)
for j in range(i * width + 1, (i + 1) * width + 1)]
for i in range(args.max_shuffle_height + 1)]
results = inputs
for shuffles in shuffle_tree:
results = [[((results[i] if j < width else results[i + 1])[j % width]
if j != -1 else -1)
for j in s]
for i, s in enumerate(shuffles)]
if len(results) != 1:
print('ERROR: Bad results: %s' % (results,), file=sys.stderr)
sys.exit(1)
result = results[0]
if args.verbose:
print('Which transforms:', file=sys.stderr)
print(' from: %s' % (inputs,), file=sys.stderr)
print(' into: %s' % (result,), file=sys.stderr)
print('', file=sys.stderr)
# The IR uses silly names for floating point types. We also need a same-size
# integer type.
integral_element_type = element_type
if element_type == 'f32':
integral_element_type = 'i32'
element_type = 'float'
elif element_type == 'f64':
integral_element_type = 'i64'
element_type = 'double'
# Now we need to generate IR for the shuffle function.
subst = {'N': width, 'T': element_type, 'IT': integral_element_type}
print("""
define internal fastcc <%(N)d x %(T)s> @test(%(arguments)s) noinline nounwind {
entry:""" % dict(subst,
arguments=', '.join(
['<%(N)d x %(T)s> %%s.0.%(i)d' % dict(subst, i=i)
for i in range(args.max_shuffle_height + 1)])))
for i, shuffles in enumerate(shuffle_tree):
for j, s in enumerate(shuffles):
print("""
%%s.%(next_i)d.%(j)d = shufflevector <%(N)d x %(T)s> %%s.%(i)d.%(j)d, <%(N)d x %(T)s> %%s.%(i)d.%(next_j)d, <%(N)d x i32> <%(S)s>
""".strip('\n') % dict(subst, i=i, next_i=i + 1, j=j, next_j=j + 1,
S=', '.join(['i32 ' + (str(si) if si != -1 else 'undef')
for si in s])))
print("""
ret <%(N)d x %(T)s> %%s.%(i)d.0
}
""" % dict(subst, i=len(shuffle_tree)))
# Generate some string constants that we can use to report errors.
for i, r in enumerate(result):
if r != -1:
s = ('FAIL(%(seed)s): lane %(lane)d, expected %(result)d, found %%d\n\\0A' %
{'seed': args.seed, 'lane': i, 'result': r})
s += ''.join(['\\00' for _ in itertools.repeat(None, 128 - len(s) + 2)])
print("""
@error.%(i)d = private unnamed_addr global [128 x i8] c"%(s)s"
""".strip() % {'i': i, 's': s})
# Define a wrapper function which is marked 'optnone' to prevent
# interprocedural optimizations from deleting the test.
print("""
define internal fastcc <%(N)d x %(T)s> @test_wrapper(%(arguments)s) optnone noinline {
%%result = call fastcc <%(N)d x %(T)s> @test(%(arguments)s)
ret <%(N)d x %(T)s> %%result
}
""" % dict(subst,
arguments=', '.join(['<%(N)d x %(T)s> %%s.%(i)d' % dict(subst, i=i)
for i in range(args.max_shuffle_height + 1)])))
# Finally, generate a main function which will trap if any lanes are mapped
# incorrectly (in an observable way).
print("""
define i32 @main() {
entry:
; Create a scratch space to print error messages.
%%str = alloca [128 x i8]
%%str.ptr = getelementptr inbounds [128 x i8], [128 x i8]* %%str, i32 0, i32 0
; Build the input vector and call the test function.
%%v = call fastcc <%(N)d x %(T)s> @test_wrapper(%(inputs)s)
; We need to cast this back to an integer type vector to easily check the
; result.
%%v.cast = bitcast <%(N)d x %(T)s> %%v to <%(N)d x %(IT)s>
br label %%test.0
""" % dict(subst,
inputs=', '.join(
[('<%(N)d x %(T)s> bitcast '
'(<%(N)d x %(IT)s> <%(input)s> to <%(N)d x %(T)s>)' %
dict(subst, input=', '.join(['%(IT)s %(i)d' % dict(subst, i=i)
for i in input])))
for input in inputs])))
# Test that each non-undef result lane contains the expected value.
for i, r in enumerate(result):
if r == -1:
print("""
test.%(i)d:
; Skip this lane, its value is undef.
br label %%test.%(next_i)d
""" % dict(subst, i=i, next_i=i + 1))
else:
print("""
test.%(i)d:
%%v.%(i)d = extractelement <%(N)d x %(IT)s> %%v.cast, i32 %(i)d
%%cmp.%(i)d = icmp ne %(IT)s %%v.%(i)d, %(r)d
br i1 %%cmp.%(i)d, label %%die.%(i)d, label %%test.%(next_i)d
die.%(i)d:
; Capture the actual value and print an error message.
%%tmp.%(i)d = zext %(IT)s %%v.%(i)d to i2048
%%bad.%(i)d = trunc i2048 %%tmp.%(i)d to i32
call i32 (i8*, i8*, ...) @sprintf(i8* %%str.ptr, i8* getelementptr inbounds ([128 x i8], [128 x i8]* @error.%(i)d, i32 0, i32 0), i32 %%bad.%(i)d)
%%length.%(i)d = call i32 @strlen(i8* %%str.ptr)
call i32 @write(i32 2, i8* %%str.ptr, i32 %%length.%(i)d)
call void @llvm.trap()
unreachable
""" % dict(subst, i=i, next_i=i + 1, r=r))
print("""
test.%d:
ret i32 0
}
declare i32 @strlen(i8*)
declare i32 @write(i32, i8*, i32)
declare i32 @sprintf(i8*, i8*, ...)
declare void @llvm.trap() noreturn nounwind
""" % (len(result),))
if __name__ == '__main__':
main()
|