| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 
 | //===- ConstantFold.cpp - Implementation of constant folding on Linalg ops ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements constant folding on Linalg operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include <optional>
using namespace mlir;
using namespace mlir::linalg;
namespace {
/// Base class for constant folding linalg.generic ops with N inputs, 1 output,
/// and permutation indexing maps.
///
/// `ConcreteType` should provide methods with signatures
///
/// ```c++
///   bool matchIndexingMaps(GenericOp genericOp) const;
///   RegionComputationFn getRegionComputeFn(GenericOp) const;
/// ```
///
/// The latter inspects the region and returns the computation inside as a
/// functor. The functor will be invoked with constant elements for all inputs
/// and should return the corresponding computed constant element for output.
template <typename ConcreteType>
class FoldConstantBase : public OpRewritePattern<GenericOp> {
public:
  struct APIntOrFloat {
    std::optional<APInt> apInt;
    std::optional<APFloat> apFloat;
  };
  struct APIntOrFloatArray {
    SmallVector<APInt> apInts;
    SmallVector<APFloat> apFloats;
  };
  using RegionComputationFn =
      std::function<APIntOrFloat(const APIntOrFloatArray &)>;
  FoldConstantBase(MLIRContext *context, const ControlFusionFn &controlFn,
                   PatternBenefit benefit = 1)
      : OpRewritePattern<GenericOp>(context, benefit), controlFn(controlFn) {}
  LogicalResult matchAndRewrite(GenericOp genericOp,
                                PatternRewriter &rewriter) const override {
    // Mixed and buffer sematics aren't supported.
    if (!genericOp.hasTensorSemantics())
      return failure();
    // Only support ops generating one output for now.
    if (genericOp.getNumDpsInits() != 1)
      return failure();
    auto outputType = genericOp.getResultTypes().front().dyn_cast<ShapedType>();
    // Require the output types to be static given that we are generating
    // constants.
    if (!outputType || !outputType.hasStaticShape())
      return failure();
    if (!llvm::all_of(genericOp.getInputs(), [](Value input) {
          return input.getType().isa<ShapedType>();
        }))
      return failure();
    // Make sure all element types are the same.
    auto getOperandElementType = [](Value value) {
      return value.getType().cast<ShapedType>().getElementType();
    };
    if (!llvm::all_equal(
            llvm::map_range(genericOp->getOperands(), getOperandElementType)))
      return failure();
    // We can only handle the case where we have int/float elements.
    auto elementType = outputType.getElementType();
    if (!elementType.isIntOrFloat())
      return failure();
    // Require all indexing maps to be permutations for now. This is common and
    // it simplifies input/output access greatly: we can do the data shuffling
    // entirely in the compiler, without needing to turn all indices into
    // Values, and then do affine apply on them, and then match back the
    // constant again.
    if (!llvm::all_of(genericOp.getIndexingMapsArray(),
                      [](AffineMap map) { return map.isPermutation(); }))
      return failure();
    for (OpOperand *operand : genericOp.getDpsInitOperands()) {
      if (genericOp.payloadUsesValueFromOperand(operand))
        return failure();
    }
    // Further check the indexing maps are okay for the ConcreteType.
    if (!static_cast<const ConcreteType *>(this)->matchIndexingMaps(genericOp))
      return failure();
    // Defer to the concrete type to check the region and discover the
    // computation inside.
    RegionComputationFn computeFn =
        static_cast<const ConcreteType *>(this)->getRegionComputeFn(genericOp);
    if (!computeFn)
      return failure();
    // All inputs should be constants.
    int numInputs = genericOp.getNumDpsInputs();
    SmallVector<DenseIntOrFPElementsAttr> inputValues(numInputs);
    for (const auto &en : llvm::enumerate(genericOp.getDpsInputOperands())) {
      if (!matchPattern(en.value()->get(),
                        m_Constant(&inputValues[en.index()])))
        return failure();
    }
    // Identified this as a potential candidate for folding. Now check the
    // policy to see whether we are allowed to proceed.
    for (OpOperand *operand : genericOp.getDpsInputOperands()) {
      if (!controlFn(operand))
        return failure();
    }
    auto linalgOp = cast<LinalgOp>(genericOp.getOperation());
    SmallVector<int64_t, 4> loopBounds = linalgOp.computeStaticLoopSizes();
    int64_t numElements = outputType.getNumElements();
    // Use APInt/APFloat instead of Attribute here for constructing the output.
    // This helps to avoid blowing up compiler memory usage: Attributes would
    // unify the following cases but they have lifetime as the MLIRContext.
    SmallVector<APInt> intOutputValues;
    SmallVector<APFloat> fpOutputValues;
    if (elementType.template isa<FloatType>())
      fpOutputValues.resize(numElements, APFloat(0.f));
    else
      intOutputValues.resize(numElements);
    // Return the constant dim positions from the given permutation map.
    auto getDimPositions = [](AffineMap map) {
      SmallVector<unsigned> dims;
      dims.reserve(map.getNumResults());
      for (AffineExpr result : map.getResults()) {
        dims.push_back(result.cast<AffineDimExpr>().getPosition());
      }
      return dims;
    };
    SmallVector<SmallVector<unsigned>> inputDims;
    for (int i = 0; i < numInputs; ++i)
      inputDims.push_back(getDimPositions(genericOp.getIndexingMapsArray()[i]));
    auto outputDims = getDimPositions(genericOp.getIndexingMapsArray().back());
    auto outputShape = outputType.getShape();
    // Allocate small vectors for index delinearization. Initial values do not
    // matter here as they will be overwritten later.
    SmallVector<uint64_t> indices(loopBounds.size(), 0);
    SmallVector<uint64_t> dstIndices(loopBounds.size(), 0);
    SmallVector<SmallVector<uint64_t>> srcIndices(
        numInputs, SmallVector<uint64_t>(loopBounds.size(), 0));
    SmallVector<uint64_t> srcLinearIndices(numInputs, 0);
    uint64_t dstLinearIndex = 0;
    // Allocate spaces for compute function inputs. Initial values do not matter
    // here as they will be overwritten later.
    APIntOrFloatArray computeFnInputs;
    auto inputShapes = llvm::to_vector<4>(
        llvm::map_range(genericOp.getInputs(), [](Value value) {
          return value.getType().cast<ShapedType>().getShape();
        }));
    // Given a `linearIndex`, remap it to a linear index to access linalg op
    // inputs/ouputs. This mutates `indices`, `srcIndices`, `dstIndices`,
    // `srcLinearIndices`, `dstLinearIndex` in place.
    auto computeRemappedLinearIndex = [&](int linearIndex) {
      int totalCount = linearIndex;
      for (int dim = loopBounds.size() - 1; dim >= 0; --dim) {
        indices[dim] = totalCount % loopBounds[dim];
        totalCount /= loopBounds[dim];
      }
      for (int dim = loopBounds.size() - 1; dim >= 0; --dim) {
        for (int i = 0; i < numInputs; ++i)
          srcIndices[i][dim] = indices[inputDims[i][dim]];
        dstIndices[dim] = indices[outputDims[dim]];
      }
      dstLinearIndex = dstIndices.front();
      for (int i = 0; i < numInputs; ++i)
        srcLinearIndices[i] = srcIndices[i].front();
      for (int dim = 1; dim < outputType.getRank(); ++dim) {
        dstLinearIndex = dstLinearIndex * outputShape[dim] + dstIndices[dim];
        for (int i = 0; i < numInputs; ++i)
          srcLinearIndices[i] =
              srcLinearIndices[i] * inputShapes[i][dim] + srcIndices[i][dim];
      }
    };
    bool isFloat = elementType.isa<FloatType>();
    if (isFloat) {
      SmallVector<DenseElementsAttr::iterator_range<APFloat>> inFpRanges;
      for (int i = 0; i < numInputs; ++i)
        inFpRanges.push_back(inputValues[i].getValues<APFloat>());
      computeFnInputs.apFloats.resize(numInputs, APFloat(0.f));
      // Transpose the input constant. Because we don't know its rank in
      // advance, we need to loop over the range [0, element count) and
      // delinearize the index.
      for (int linearIndex = 0; linearIndex < numElements; ++linearIndex) {
        computeRemappedLinearIndex(linearIndex);
        // Collect constant elements for all inputs at this loop iteration.
        for (int i = 0; i < numInputs; ++i)
          computeFnInputs.apFloats[i] = inFpRanges[i][srcLinearIndices[i]];
        // Invoke the computation to get the corresponding constant output
        // element.
        fpOutputValues[dstLinearIndex] = *computeFn(computeFnInputs).apFloat;
      }
    } else {
      SmallVector<DenseElementsAttr::iterator_range<APInt>> inIntRanges;
      for (int i = 0; i < numInputs; ++i)
        inIntRanges.push_back(inputValues[i].getValues<APInt>());
      computeFnInputs.apInts.resize(numInputs);
      // Transpose the input constant. Because we don't know its rank in
      // advance, we need to loop over the range [0, element count) and
      // delinearize the index.
      for (int linearIndex = 0; linearIndex < numElements; ++linearIndex) {
        computeRemappedLinearIndex(linearIndex);
        // Collect constant elements for all inputs at this loop iteration.
        for (int i = 0; i < numInputs; ++i)
          computeFnInputs.apInts[i] = inIntRanges[i][srcLinearIndices[i]];
        // Invoke the computation to get the corresponding constant output
        // element.
        intOutputValues[dstLinearIndex] = *computeFn(computeFnInputs).apInt;
      }
    }
    DenseElementsAttr outputAttr =
        isFloat ? DenseElementsAttr::get(outputType, fpOutputValues)
                : DenseElementsAttr::get(outputType, intOutputValues);
    rewriter.replaceOpWithNewOp<arith::ConstantOp>(genericOp, outputAttr);
    return success();
  }
private:
  ControlFusionFn controlFn;
};
// Folds linalg.generic ops that are actually transposes on constant values.
struct FoldConstantTranspose : public FoldConstantBase<FoldConstantTranspose> {
  using FoldConstantBase::FoldConstantBase;
  bool matchIndexingMaps(GenericOp genericOp) const {
    // We should have one input and one output.
    return genericOp.getIndexingMapsArray().size() == 2;
  }
  RegionComputationFn getRegionComputeFn(GenericOp genericOp) const {
    // Make sure the region only contains a yield op.
    Block &body = genericOp.getRegion().front();
    if (!llvm::hasSingleElement(body))
      return nullptr;
    auto yieldOp = dyn_cast<linalg::YieldOp>(body.getTerminator());
    if (!yieldOp)
      return nullptr;
    // The yield op should return the block argument corresponds to the input.
    for (Value yieldVal : yieldOp.getValues()) {
      auto yieldArg = yieldVal.dyn_cast<BlockArgument>();
      if (!yieldArg || yieldArg.getOwner() != &body)
        return nullptr;
      if (yieldArg.getArgNumber() != 0)
        return nullptr;
    }
    // No computation; just return the orginal value.
    return [](const APIntOrFloatArray &inputs) {
      if (inputs.apFloats.empty())
        return APIntOrFloat{inputs.apInts.front(), std::nullopt};
      return APIntOrFloat{std::nullopt, inputs.apFloats.front()};
    };
  }
  ControlFusionFn controlFn;
};
} // namespace
void mlir::linalg::populateConstantFoldLinalgOperations(
    RewritePatternSet &patterns, const ControlFusionFn &controlFn) {
  MLIRContext *context = patterns.getContext();
  patterns.insert<FoldConstantTranspose>(context, controlFn);
}
 |