| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 
 | //===- ConvertToDestinationStyle.cpp - Convert non-DPS to DPS ops ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains patterns to convert non-DPS ops to DPS ops. New
// tensor.empty ops are inserted as a destination. Such tensor.empty can be
// eliminated with "empty tensor elimination", allowing them to bufferize
// without an allocation (assuming there are no further conflicts).
//
//===----------------------------------------------------------------------===//
//
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "llvm/Support/Debug.h"
using namespace mlir;
using namespace mlir::tensor;
namespace {
/// Lower tensor.generate to linalg.generic.
struct GenerateOpConverter : public OpRewritePattern<GenerateOp> {
  using OpRewritePattern<GenerateOp>::OpRewritePattern;
  LogicalResult matchAndRewrite(GenerateOp generateOp,
                                PatternRewriter &rewriter) const override {
    // Only ops with exactly one block are supported.
    if (!generateOp.getBody().hasOneBlock())
      return failure();
    Location loc = generateOp.getLoc();
    RankedTensorType tensorType = generateOp.getType().cast<RankedTensorType>();
    // Create tensor.empty.
    auto emptyOp = rewriter.create<EmptyOp>(loc, tensorType,
                                            generateOp.getDynamicExtents());
    // Create linalg.generic.
    SmallVector<utils::IteratorType> iteratorTypes(
        tensorType.getRank(), utils::IteratorType::parallel);
    SmallVector<AffineMap> indexingMaps(
        1, rewriter.getMultiDimIdentityMap(tensorType.getRank()));
    auto genericOp = rewriter.create<linalg::GenericOp>(
        loc, tensorType, /*inputs=*/ValueRange(),
        /*outputs=*/ValueRange{emptyOp.getResult()}, /*indexingMaps=*/
        indexingMaps, iteratorTypes);
    Block *body = rewriter.createBlock(&genericOp->getRegion(0), {},
                                       tensorType.getElementType(), loc);
    rewriter.setInsertionPointToStart(body);
    SmallVector<Value> bbArgReplacements;
    for (int64_t i = 0; i < tensorType.getRank(); ++i)
      bbArgReplacements.push_back(rewriter.create<linalg::IndexOp>(loc, i));
    rewriter.mergeBlocks(&generateOp.getBody().front(), body,
                         bbArgReplacements);
    // Update terminator.
    auto yieldOp = cast<tensor::YieldOp>(body->getTerminator());
    rewriter.replaceOpWithNewOp<linalg::YieldOp>(yieldOp, yieldOp.getValue());
    // Replace tensor.generate.
    rewriter.replaceOp(generateOp, genericOp->getResult(0));
    return success();
  }
};
/// Lower tensor.pad to linalg.generic + tensor.insert_slice.
struct PadOpConverter : public OpRewritePattern<PadOp> {
  using OpRewritePattern<PadOp>::OpRewritePattern;
  LogicalResult matchAndRewrite(PadOp padOp,
                                PatternRewriter &rewriter) const override {
    // Only ops with exactly one block are supported.
    if (!padOp.getBodyRegion().hasOneBlock())
      return failure();
    // Create tensor.empty.
    Location loc = padOp.getLoc();
    RankedTensorType resultType = padOp.getResultType();
    ReifiedRankedShapedTypeDims reifiedShape;
    if (failed(cast<ReifyRankedShapedTypeOpInterface>(padOp.getOperation())
                   .reifyResultShapes(rewriter, reifiedShape)))
      return rewriter.notifyMatchFailure(
          padOp, "failed to reify tensor.pad op result shape");
    SmallVector<Value> dynamicSizes;
    for (int64_t i = 0; i < resultType.getRank(); ++i)
      if (resultType.isDynamicDim(i))
        dynamicSizes.push_back(reifiedShape[0][i]);
    auto emptyOp = rewriter.create<EmptyOp>(loc, resultType, dynamicSizes);
    // Examine the yielded value to decide if a linalg.generic is neede or a
    // linalg.fill is sufficient.
    Value filled;
    Value yieldedValue =
        cast<tensor::YieldOp>(padOp.getBody()->getTerminator()).getValue();
    Attribute constYieldedValue;
    // Is the yielded value a bbArg defined outside of the PadOp?
    bool outsideBbArg =
        yieldedValue.isa<BlockArgument>() &&
        yieldedValue.cast<BlockArgument>().getOwner()->getParentOp() !=
            padOp.getOperation();
    // Is the yielded value an OpResult defined outside of the PadOp?
    bool outsideOpResult =
        yieldedValue.isa<OpResult>() &&
        yieldedValue.getDefiningOp()->getParentOp() != padOp.getOperation();
    bool invariantYieldedValue = outsideBbArg || outsideOpResult;
    if (matchPattern(yieldedValue, m_Constant(&constYieldedValue))) {
      // Padding with a constant: Create linalg.fill.
      Dialect *arithDialect =
          rewriter.getContext()->getLoadedDialect<arith::ArithDialect>();
      Value fillValue = arithDialect
                            ->materializeConstant(rewriter, constYieldedValue,
                                                  yieldedValue.getType(),
                                                  yieldedValue.getLoc())
                            ->getResult(0);
      auto fillOp = rewriter.create<linalg::FillOp>(
          loc, ValueRange(fillValue), ValueRange(emptyOp.getResult()));
      rewriter.setInsertionPointAfter(fillOp);
      filled = fillOp.getResult(0);
    } else if (invariantYieldedValue) {
      // Padding with an invariant value.
      auto fillOp = rewriter.create<linalg::FillOp>(
          loc, ValueRange(yieldedValue), ValueRange(emptyOp.getResult()));
      rewriter.setInsertionPointAfter(fillOp);
      filled = fillOp.getResult(0);
    } else {
      // Create linalg.generic.
      SmallVector<utils::IteratorType> iteratorTypes(
          resultType.getRank(), utils::IteratorType::parallel);
      SmallVector<AffineMap> indexingMaps(
          1, rewriter.getMultiDimIdentityMap(resultType.getRank()));
      auto genericOp = rewriter.create<linalg::GenericOp>(
          loc, resultType, /*inputs=*/ValueRange(),
          /*outputs=*/ValueRange{emptyOp.getResult()}, /*indexingMaps=*/
          indexingMaps, iteratorTypes);
      Block *body = rewriter.createBlock(&genericOp->getRegion(0), {},
                                         resultType.getElementType(), loc);
      rewriter.setInsertionPointToStart(body);
      SmallVector<Value> bbArgReplacements;
      for (int64_t i = 0; i < resultType.getRank(); ++i)
        bbArgReplacements.push_back(rewriter.create<linalg::IndexOp>(loc, i));
      rewriter.mergeBlocks(padOp.getBody(), body, bbArgReplacements);
      // Update terminator.
      auto yieldOp = cast<tensor::YieldOp>(body->getTerminator());
      rewriter.replaceOpWithNewOp<linalg::YieldOp>(yieldOp, yieldOp.getValue());
      rewriter.setInsertionPointAfter(genericOp);
      filled = genericOp->getResult(0);
    }
    // Create tensor::InsertSliceOp.
    SmallVector<OpFoldResult> sliceSizes =
        getMixedSizes(rewriter, loc, padOp.getSource());
    SmallVector<OpFoldResult> sliceStrides(resultType.getRank(),
                                           rewriter.getIndexAttr(1));
    rewriter.replaceOpWithNewOp<tensor::InsertSliceOp>(
        padOp, padOp.getSource(), filled,
        /*offsets=*/padOp.getMixedLowPad(), sliceSizes, sliceStrides);
    return success();
  }
};
} // namespace
void linalg::populateConvertToDestinationStylePatterns(
    RewritePatternSet &patterns) {
  patterns.insert<GenerateOpConverter, PadOpConverter>(patterns.getContext());
}
 |