| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 
 | //===- DropUnitDims.cpp - Pass to drop use of unit-extent for broadcasting ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements patterns/pass to remove usage of unit-extent dimensions
// to specify broadcasting in favor of more canonical representation of the
// computation
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/Transforms/Transforms.h"
#include "mlir/Dialect/Tensor/Utils/Utils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/Transforms/FoldUtils.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
namespace mlir {
#define GEN_PASS_DEF_LINALGFOLDUNITEXTENTDIMS
#include "mlir/Dialect/Linalg/Passes.h.inc"
} // namespace mlir
#define DEBUG_TYPE "linalg-drop-unit-dims"
using namespace mlir;
using namespace mlir::linalg;
namespace {
enum class RankReductionStrategy { ReassociativeReshape, ExtractInsertSlice };
} // namespace
/// Implements a pass that canonicalizes the uses of unit-extent dimensions for
/// broadcasting. For example,
///
/// ```mlir
/// #accesses = [
///   affine_map<(d0, d1) -> (0, d1)>,
///   affine_map<(d0, d1) -> (d0, 0)>,
///   affine_map<(d0, d1) -> (d0, d1)>
/// ]
///
/// #trait = {
///   args_in = 2,
///   args_out = 1,
///   indexing_maps = #accesses,
///   iterator_types = ["parallel", "parallel"],
///   library_call = "some_external_fn"
/// }
///
/// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) ->
/// tensor<5x5xf32>
/// {
///   %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>] :
///        tensor<5xf32> into tensor<1x5xf32>
///   %1 = linalg.tensor_reshape %arg1 [affine_map<(d0, d1) -> (d0, d1)>] :
///        tensor<5xf32> into tensor<5x1xf32>
///   %2 = linalg.generic #trait %0, %1 {
///        ^bb0(%arg2: f32, %arg3: f32):
///          %3 = arith.addf %arg2, %arg3 : f32
///          linalg.yield %3 : f32
///        } : tensor<1x5xf32>, tensor<5x1xf32> -> tensor<5x5xf32>
///   return %2 : tensor<5x5xf32>
/// }
///
/// would canonicalize to
///
/// ```mlir
/// #accesses = [
///   affine_map<(d0, d1) -> (d1)>,
///   affine_map<(d0, d1) -> (d0)>,
///   affine_map<(d0, d1) -> (d0, d1)>
/// ]
///
/// #trait = {
///   args_in = 2,
///   args_out = 1,
///   indexing_maps = #accesses,
///   iterator_types = ["parallel", "parallel"],
///   library_call = "some_external_fn"
/// }
///
/// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) ->
/// tensor<5x5xf32>
/// {
///   %0 = linalg.generic #trait %arg0, %arg1 {
///        ^bb0(%arg2: f32, %arg3: f32):
///          %3 = arith.addf %arg2, %arg3 : f32
///          linalg.yield %3 : f32
///        } : tensor<5xf32>, tensor<5xf32> -> tensor<5x5xf32>
///   return %0 : tensor<5x5xf32>
/// }
/// Given dims of the iteration space of a structured op that are known to be
/// single trip count (`unitDims`), return the indexing maps to use in the
/// canonicalized op with these dims removed, given the original `indexingMaps`.
static ArrayAttr replaceUnitDims(DenseSet<unsigned> &unitDims,
                                 ArrayRef<AffineMap> indexingMaps,
                                 MLIRContext *context) {
  if (indexingMaps.empty())
    return nullptr;
  unsigned numIterationDims = indexingMaps.front().getNumDims();
  unsigned numSymbols = indexingMaps.front().getNumSymbols();
  // Compute the replacement for each dim expr.
  SmallVector<AffineExpr, 4> dimReplacements;
  dimReplacements.reserve(numIterationDims);
  unsigned numKeptDims = 0;
  for (unsigned dim : llvm::seq<unsigned>(0, numIterationDims)) {
    if (unitDims.count(dim))
      dimReplacements.push_back(getAffineConstantExpr(0, context));
    else
      dimReplacements.push_back(getAffineDimExpr(numKeptDims++, context));
  }
  // Symbols remain the same.
  SmallVector<AffineExpr, 4> symReplacements;
  symReplacements.reserve(numSymbols);
  for (unsigned symbol : llvm::seq<unsigned>(0, numSymbols))
    symReplacements.push_back(getAffineSymbolExpr(symbol, context));
  SmallVector<AffineMap, 4> newIndexingMaps;
  newIndexingMaps.reserve(indexingMaps.size());
  for (AffineMap operandMap : indexingMaps) {
    // Expected indexing maps to have no symbols.
    if (operandMap.getNumSymbols())
      return nullptr;
    newIndexingMaps.push_back(simplifyAffineMap(
        operandMap.replaceDimsAndSymbols(dimReplacements, symReplacements,
                                         numIterationDims - unitDims.size(),
                                         numSymbols)));
  }
  // Check that the new index maps are invertible. If not, something went
  // wrong, so abort.
  if (!inversePermutation(concatAffineMaps(newIndexingMaps)))
    return nullptr;
  return ArrayAttr::get(context,
                        llvm::to_vector<4>(llvm::map_range(
                            newIndexingMaps, [](AffineMap map) -> Attribute {
                              return AffineMapAttr::get(map);
                            })));
}
/// Update the index accesses of linalg operations having index semantics.
static void replaceUnitDimIndexOps(GenericOp genericOp,
                                   const DenseSet<unsigned> &unitDims,
                                   PatternRewriter &rewriter) {
  for (IndexOp indexOp :
       llvm::make_early_inc_range(genericOp.getBody()->getOps<IndexOp>())) {
    OpBuilder::InsertionGuard guard(rewriter);
    rewriter.setInsertionPoint(indexOp);
    if (unitDims.count(indexOp.getDim()) != 0) {
      rewriter.replaceOpWithNewOp<arith::ConstantIndexOp>(indexOp, 0);
    } else {
      // Update the dimension of the index operation if needed.
      unsigned droppedDims = llvm::count_if(
          unitDims, [&](unsigned dim) { return dim < indexOp.getDim(); });
      if (droppedDims != 0)
        rewriter.replaceOpWithNewOp<IndexOp>(indexOp,
                                             indexOp.getDim() - droppedDims);
    }
  }
}
namespace {
/// Pattern to fold unit-trip count loops in GenericOps.
struct FoldUnitDimLoops : public OpRewritePattern<GenericOp> {
  using OpRewritePattern<GenericOp>::OpRewritePattern;
  LogicalResult matchAndRewrite(GenericOp genericOp,
                                PatternRewriter &rewriter) const override {
    SmallVector<AffineMap, 4> indexingMaps = genericOp.getIndexingMapsArray();
    if (indexingMaps.empty())
      return failure();
    // Check if any of the iteration dimensions are unit-trip count. They will
    // end up being unit-trip count if they are used to index into a unit-dim
    // tensor/memref.
    AffineMap invertedMap = inversePermutation(concatAffineMaps(indexingMaps));
    if (!invertedMap)
      return failure();
    SmallVector<int64_t> dims = genericOp.getStaticShape();
    DenseSet<unsigned> unitDims;
    SmallVector<unsigned, 4> unitDimsReductionLoops;
    ArrayAttr iteratorTypes = genericOp.getIteratorTypes();
    for (const auto &expr : enumerate(invertedMap.getResults())) {
      if (AffineDimExpr dimExpr = expr.value().dyn_cast<AffineDimExpr>())
        if (dims[dimExpr.getPosition()] == 1)
          unitDims.insert(expr.index());
    }
    if (unitDims.empty())
      return failure();
    // Compute the modified indexing maps.
    MLIRContext *context = rewriter.getContext();
    ArrayAttr newIndexingMapAttr =
        replaceUnitDims(unitDims, indexingMaps, context);
    if (!newIndexingMapAttr)
      return genericOp.emitError("unable to compute modified indexing_maps");
    // Compute the iterator types of the modified op by dropping the one-trip
    // count loops.
    SmallVector<Attribute, 4> newIteratorTypes;
    for (const auto &attr : llvm::enumerate(iteratorTypes)) {
      if (!unitDims.count(attr.index()))
        newIteratorTypes.push_back(attr.value());
    }
    rewriter.startRootUpdate(genericOp);
    genericOp.setIndexingMapsAttr(newIndexingMapAttr);
    genericOp.setIteratorTypesAttr(ArrayAttr::get(context, newIteratorTypes));
    replaceUnitDimIndexOps(genericOp, unitDims, rewriter);
    rewriter.finalizeRootUpdate(genericOp);
    return success();
  }
};
/// Pattern to move init operands to ins when all the loops are parallel and
/// blockArgument corresponding to init is used in the region. This is a fix-up
/// when unit reduction dimensions are all folded away. In this context, it
/// becomes a elementwise generic op. E.g., it converts
///
///  %0 = tensor.empty() : tensor<1x1xf32>
///  %1 = linalg.fill
///    ins(%cst : f32)
///    outs(%0 : tensor<1x1xf32>) -> tensor<1x1xf32>
///  %2 = linalg.generic {indexing_maps = [affine_map<(d0) -> (0, d0, 0, 0)>,
///                                        affine_map<(d0) -> (0, d0)>],
///                       iterator_types = ["parallel"]}
///    ins(%arg0 : tensor<1x?x1x1xf32>)
///    outs(%1 : tensor<1x1xf32>) {
///  ^bb0(%in: f32, %out: f32):
///    %3 = arith.addf %in, %out : f32
///    linalg.yield %3 : f32
///  } -> tensor<1x1xf32>
///
///  into
///
///  %0 = tensor.empty() : tensor<1x1xf32>
///  %1 = linalg.fill
///    ins(%cst : f32)
///    outs(%0 : tensor<1x1xf32>) -> tensor<1x1xf32>
///  %2 = tensor.empty() : tensor<1x1xf32>
///  %3 = linalg.generic {indexing_maps = [affine_map<(d0) -> (0, d0, 0, 0)>,
///                                        affine_map<(d0) -> (0, d0)>,
///                                        affine_map<(d0) -> (0, d0)>],
///                       iterator_types = ["parallel"]}
///   ins(%arg0, %1 : tensor<1x?x1x1xf32>, tensor<1x1xf32>)
///   outs(%2 : tensor<1x1xf32>) {
///  ^bb0(%in: f32, %in_0: f32, %out: f32):
///    %4 = arith.addf %in, %in_0 : f32
///    linalg.yield %4 : f32
///  } -> tensor<1x1xf32>
struct MoveInitOperandsToInput : public OpRewritePattern<GenericOp> {
  using OpRewritePattern<GenericOp>::OpRewritePattern;
  LogicalResult matchAndRewrite(GenericOp genericOp,
                                PatternRewriter &rewriter) const override {
    if (!genericOp.hasTensorSemantics())
      return failure();
    if (genericOp.getNumParallelLoops() != genericOp.getNumLoops())
      return failure();
    auto outputOperands = genericOp.getDpsInitOperands();
    SetVector<OpOperand *> candidates;
    for (OpOperand *op : outputOperands) {
      if (genericOp.getMatchingBlockArgument(op).use_empty())
        continue;
      candidates.insert(op);
    }
    if (candidates.empty())
      return failure();
    // Compute the modified indexing maps.
    int64_t origNumInput = genericOp.getNumDpsInputs();
    SmallVector<Value> newInputOperands = genericOp.getDpsInputOperands();
    SmallVector<AffineMap> indexingMaps = genericOp.getIndexingMapsArray();
    SmallVector<AffineMap> newIndexingMaps;
    newIndexingMaps.append(indexingMaps.begin(),
                           std::next(indexingMaps.begin(), origNumInput));
    for (OpOperand *op : candidates) {
      newInputOperands.push_back(op->get());
      newIndexingMaps.push_back(genericOp.getMatchingIndexingMap(op));
    }
    newIndexingMaps.append(std::next(indexingMaps.begin(), origNumInput),
                           indexingMaps.end());
    Location loc = genericOp.getLoc();
    SmallVector<Value> newOutputOperands = outputOperands;
    for (OpOperand *op : candidates) {
      OpBuilder::InsertionGuard guard(rewriter);
      rewriter.setInsertionPointAfterValue(op->get());
      auto elemType = op->get().getType().cast<ShapedType>().getElementType();
      auto empty = rewriter.create<tensor::EmptyOp>(
          loc, tensor::createDimValues(rewriter, loc, op->get()), elemType);
      auto [start, end] = genericOp.getDpsInitsPositionRange();
      newOutputOperands[op->getOperandNumber() - start] = empty.getResult();
    }
    auto newOp = rewriter.create<GenericOp>(
        loc, genericOp.getResultTypes(), newInputOperands, newOutputOperands,
        newIndexingMaps, genericOp.getIteratorTypesArray(),
        /*bodyBuild=*/nullptr, linalg::getPrunedAttributeList(genericOp));
    Region ®ion = newOp.getRegion();
    Block *block = new Block();
    region.push_back(block);
    IRMapping mapper;
    OpBuilder::InsertionGuard guard(rewriter);
    rewriter.setInsertionPointToStart(block);
    for (auto bbarg : genericOp.getRegionInputArgs())
      mapper.map(bbarg, block->addArgument(bbarg.getType(), loc));
    for (OpOperand *op : candidates) {
      BlockArgument bbarg = genericOp.getMatchingBlockArgument(op);
      mapper.map(bbarg, block->addArgument(bbarg.getType(), loc));
    }
    for (OpOperand *op : outputOperands) {
      BlockArgument bbarg = genericOp.getMatchingBlockArgument(op);
      if (candidates.count(op))
        block->addArgument(bbarg.getType(), loc);
      else
        mapper.map(bbarg, block->addArgument(bbarg.getType(), loc));
    }
    for (auto &op : genericOp.getBody()->getOperations()) {
      rewriter.clone(op, mapper);
    }
    rewriter.replaceOp(genericOp, newOp.getResults());
    return success();
  }
};
struct UnitExtentReplacementInfo {
  AffineMap indexMap;
  SmallVector<ReassociationIndices> reassociation;
  SmallVector<int64_t> targetShape;
};
} // namespace
/// Utility function for replacing operands/results to a linalg generic
/// operation with unit-extent dimensions. These can be replaced with
/// an operand/result with the unit-extent dimension removed. This is only done
/// if the indexing map used to access that dimension has a
/// AffineConstantExpr of value 0. Given the `type` of an result/operand of a
/// Linalg op, and its `indexMap` the utility function returns:
/// - the new type with dimensions of size 1 removed.
/// - modified index map that can be used to access the replaced result/operand
/// - the reassociation that converts from the original tensor type to the
///   modified tensor type.
static std::optional<UnitExtentReplacementInfo>
replaceUnitExtents(GenericOp genericOp, OpOperand *opOperand,
                   MLIRContext *context) {
  AffineMap indexingMap = genericOp.getMatchingIndexingMap(opOperand);
  ArrayRef<int64_t> shape = genericOp.getShape(opOperand);
  ArrayRef<AffineExpr> exprs = indexingMap.getResults();
  SmallVector<AffineExpr> newIndexExprs;
  SmallVector<int64_t> newShape;
  int64_t origRank = genericOp.getRank(opOperand);
  AffineExpr zeroExpr = getAffineConstantExpr(0, context);
  auto isUnitExtent = [&](int64_t dim) -> bool {
    return shape[dim] == 1 && exprs[dim] == zeroExpr;
  };
  // Early return for memrefs with affine maps to represent that we will always
  // leave them unchanged.
  Type actualType = opOperand->get().getType();
  if (auto memref = actualType.dyn_cast<MemRefType>()) {
    if (!memref.getLayout().isIdentity())
      return std::nullopt;
  }
  int64_t dim = 0;
  SmallVector<ReassociationIndices> reassociation;
  ReassociationIndices reassociationGroup;
  // Fold dimensions that are unit-extent at the beginning of the tensor.
  while (dim < origRank && isUnitExtent(dim))
    reassociationGroup.push_back(dim++);
  while (dim < origRank) {
    assert(!isUnitExtent(dim) && "expected non unit-extent");
    reassociationGroup.push_back(dim);
    newIndexExprs.push_back(exprs[dim]);
    newShape.push_back(shape[dim]);
    ++dim;
    // Fold all following dimensions that are unit-extent.
    while (dim < origRank && isUnitExtent(dim))
      reassociationGroup.push_back(dim++);
    reassociation.push_back(reassociationGroup);
    reassociationGroup.clear();
  }
  // Return if the rank was not reduced.
  if (origRank == static_cast<int64_t>(newShape.size()))
    return std::nullopt;
  UnitExtentReplacementInfo info = {
      /*indexMap=*/AffineMap::get(indexingMap.getNumDims(),
                                  indexingMap.getNumSymbols(), newIndexExprs,
                                  context),
      /*reassociation=*/reassociation, /*targetShape=*/newShape};
  return info;
}
namespace {
/// Pattern to replace tensor/buffer operands/results that are unit extents.
struct ReplaceUnitExtents : public OpRewritePattern<GenericOp> {
  ReplaceUnitExtents(MLIRContext *ctx,
                     RankReductionStrategy rankReductionStrategy)
      : OpRewritePattern<GenericOp>(ctx),
        rankReductionStrategy(rankReductionStrategy) {}
  // Expand the given value.
  Value expandValue(Value result, Value origOutput,
                    ArrayRef<ReassociationIndices> reassociation, Location loc,
                    PatternRewriter &rewriter) const {
    // There are no results for memref outputs.
    auto origResultType = origOutput.getType().cast<RankedTensorType>();
    if (rankReductionStrategy == RankReductionStrategy::ExtractInsertSlice) {
      unsigned rank = origResultType.getRank();
      SmallVector<OpFoldResult> offsets(rank, rewriter.getIndexAttr(0));
      SmallVector<OpFoldResult> sizes =
          tensor::getMixedSizes(rewriter, loc, origOutput);
      SmallVector<OpFoldResult> strides(rank, rewriter.getIndexAttr(1));
      return rewriter.createOrFold<tensor::InsertSliceOp>(
          loc, result, origOutput, offsets, sizes, strides);
    }
    assert(rankReductionStrategy ==
               RankReductionStrategy::ReassociativeReshape &&
           "unknown rank reduction strategy");
    return rewriter.create<tensor::ExpandShapeOp>(loc, origResultType, result,
                                                  reassociation);
  }
  // Collapse the given value.
  Value collapseValue(Value operand, ArrayRef<int64_t> targetShape,
                      ArrayRef<ReassociationIndices> reassociation,
                      Location loc, PatternRewriter &rewriter) const {
    if (auto memrefType = operand.getType().dyn_cast<MemRefType>()) {
      if (rankReductionStrategy == RankReductionStrategy::ExtractInsertSlice) {
        FailureOr<Value> rankReducingExtract =
            memref::SubViewOp::rankReduceIfNeeded(rewriter, loc, operand,
                                                  targetShape);
        assert(succeeded(rankReducingExtract) && "not a unit-extent collapse");
        return *rankReducingExtract;
      }
      assert(rankReductionStrategy ==
                 RankReductionStrategy::ReassociativeReshape &&
             "unknown rank reduction strategy");
      MemRefLayoutAttrInterface layout;
      auto targetType =
          MemRefType::get(targetShape, memrefType.getElementType(), layout,
                          memrefType.getMemorySpace());
      return rewriter.create<memref::CollapseShapeOp>(loc, targetType, operand,
                                                      reassociation);
    }
    if (auto tensorType = operand.getType().dyn_cast<RankedTensorType>()) {
      if (rankReductionStrategy == RankReductionStrategy::ExtractInsertSlice) {
        FailureOr<Value> rankReducingExtract =
            tensor::ExtractSliceOp::rankReduceIfNeeded(rewriter, loc, operand,
                                                       targetShape);
        assert(succeeded(rankReducingExtract) && "not a unit-extent collapse");
        return *rankReducingExtract;
      }
      assert(rankReductionStrategy ==
                 RankReductionStrategy::ReassociativeReshape &&
             "unknown rank reduction strategy");
      auto targetType =
          RankedTensorType::get(targetShape, tensorType.getElementType());
      return rewriter.create<tensor::CollapseShapeOp>(loc, targetType, operand,
                                                      reassociation);
    }
    llvm_unreachable("unsupported operand type");
  }
  LogicalResult matchAndRewrite(GenericOp genericOp,
                                PatternRewriter &rewriter) const override {
    // Skip the pattern if the op has any tensor with special encoding.
    if (llvm::any_of(genericOp->getOperandTypes(), [](Type type) {
          auto tensorType = type.dyn_cast<RankedTensorType>();
          return tensorType && tensorType.getEncoding() != nullptr;
        }))
      return failure();
    MLIRContext *context = rewriter.getContext();
    Location loc = genericOp.getLoc();
    SmallVector<Value> oldOutputs(genericOp.getOutputs().begin(),
                                  genericOp.getOutputs().end());
    SmallVector<AffineMap> newIndexingMaps;
    SmallVector<SmallVector<ReassociationIndices>> reassociations;
    SmallVector<SmallVector<int64_t>> targetShapes;
    SmallVector<bool> collapsed;
    for (OpOperand &opOperand : genericOp->getOpOperands()) {
      auto replacementInfo = replaceUnitExtents(genericOp, &opOperand, context);
      if (replacementInfo) {
        reassociations.push_back(replacementInfo->reassociation);
        newIndexingMaps.push_back(replacementInfo->indexMap);
        targetShapes.push_back(replacementInfo->targetShape);
        collapsed.push_back(true);
      } else {
        // If replaceUnitExtents cannot handle this case (or no unit dim was
        // removed), maintain the same type, indexing map, and create a set of
        // mappings representing an identity matrix.
        newIndexingMaps.push_back(genericOp.getMatchingIndexingMap(&opOperand));
        reassociations.emplace_back();
        targetShapes.emplace_back();
        collapsed.push_back(false);
      }
    }
    // Abort if the indexing maps of the result operation are not invertible
    // (i.e. not legal) or if no dimension was reduced.
    if (!llvm::any_of(collapsed, [](bool c) { return c; }) ||
        !inversePermutation(concatAffineMaps(newIndexingMaps)))
      return failure();
    // Insert rank reductions.
    SmallVector<Value> newOperands;
    for (OpOperand &opOperand : genericOp->getOpOperands()) {
      int64_t idx = opOperand.getOperandNumber();
      if (!collapsed[idx]) {
        newOperands.push_back(opOperand.get());
        continue;
      }
      newOperands.push_back(collapseValue(opOperand.get(), targetShapes[idx],
                                          reassociations[idx], loc, rewriter));
    }
    // If any result type changes, insert a reshape to convert from the original
    // type to the new type.
    ArrayRef<Value> newInputs =
        ArrayRef<Value>(newOperands).take_front(genericOp.getNumDpsInputs());
    ArrayRef<Value> newOutputs =
        ArrayRef<Value>(newOperands).take_back(genericOp.getNumDpsInits());
    SmallVector<Type> resultTypes;
    resultTypes.reserve(genericOp.getNumResults());
    for (unsigned i : llvm::seq<unsigned>(0, genericOp.getNumResults()))
      resultTypes.push_back(newOutputs[i].getType());
    GenericOp replacementOp = rewriter.create<GenericOp>(
        loc, resultTypes, newInputs, newOutputs, newIndexingMaps,
        genericOp.getIteratorTypesArray());
    rewriter.inlineRegionBefore(genericOp.getRegion(),
                                replacementOp.getRegion(),
                                replacementOp.getRegion().begin());
    // If any result tensor has a modified shape, then add reshape to recover
    // the original shape.
    SmallVector<Value> resultReplacements;
    for (const auto &result : llvm::enumerate(replacementOp.getResults())) {
      unsigned index = result.index() + replacementOp.getNumDpsInputs();
      Value origOutput = oldOutputs[result.index()];
      if (!collapsed[result.index() + genericOp.getNumDpsInputs()]) {
        resultReplacements.push_back(result.value());
        continue;
      }
      resultReplacements.push_back(expandValue(
          result.value(), origOutput, reassociations[index], loc, rewriter));
    }
    rewriter.replaceOp(genericOp, resultReplacements);
    return success();
  }
private:
  RankReductionStrategy rankReductionStrategy;
};
} // namespace
namespace {
/// Convert `extract_slice` operations to rank-reduced versions.
struct RankReducedExtractSliceOp
    : public OpRewritePattern<tensor::ExtractSliceOp> {
  using OpRewritePattern<tensor::ExtractSliceOp>::OpRewritePattern;
  LogicalResult matchAndRewrite(tensor::ExtractSliceOp sliceOp,
                                PatternRewriter &rewriter) const override {
    RankedTensorType resultType = sliceOp.getType();
    SmallVector<OpFoldResult> offsets = sliceOp.getMixedOffsets();
    SmallVector<OpFoldResult> sizes = sliceOp.getMixedSizes();
    SmallVector<OpFoldResult> strides = sliceOp.getMixedStrides();
    auto reassociation = getReassociationMapForFoldingUnitDims(sizes);
    if (!reassociation ||
        reassociation->size() == static_cast<size_t>(resultType.getRank()))
      return failure();
    auto rankReducedType =
        tensor::ExtractSliceOp::inferCanonicalRankReducedResultType(
            reassociation->size(), sliceOp.getSourceType(), offsets, sizes,
            strides)
            .cast<RankedTensorType>();
    Location loc = sliceOp.getLoc();
    Value newSlice = rewriter.create<tensor::ExtractSliceOp>(
        loc, rankReducedType, sliceOp.getSource(), offsets, sizes, strides);
    rewriter.replaceOpWithNewOp<tensor::ExpandShapeOp>(
        sliceOp, resultType, newSlice, *reassociation);
    return success();
  }
};
/// Convert `insert_slice` operations to rank-reduced versions.
/// This patterns works with both InsertSliceOp and ParallelInsertSliceOp.
template <typename InsertOpTy>
struct RankReducedInsertSliceOp : public OpRewritePattern<InsertOpTy> {
  using OpRewritePattern<InsertOpTy>::OpRewritePattern;
  LogicalResult matchAndRewrite(InsertOpTy insertSliceOp,
                                PatternRewriter &rewriter) const override {
    RankedTensorType sourceType = insertSliceOp.getSourceType();
    SmallVector<OpFoldResult> offsets = insertSliceOp.getMixedOffsets();
    SmallVector<OpFoldResult> sizes = insertSliceOp.getMixedSizes();
    SmallVector<OpFoldResult> strides = insertSliceOp.getMixedStrides();
    auto reassociation = getReassociationMapForFoldingUnitDims(sizes);
    if (!reassociation ||
        reassociation->size() == static_cast<size_t>(sourceType.getRank()))
      return failure();
    Location loc = insertSliceOp.getLoc();
    tensor::CollapseShapeOp reshapedSource;
    {
      OpBuilder::InsertionGuard g(rewriter);
      // The only difference between InsertSliceOp and ParallelInsertSliceOp is
      // the insertion point is just before the ParallelCombiningOp in the
      // parallel case.
      if (std::is_same<InsertOpTy, tensor::ParallelInsertSliceOp>::value)
        rewriter.setInsertionPoint(insertSliceOp->getParentOp());
      reshapedSource = rewriter.create<tensor::CollapseShapeOp>(
          loc, insertSliceOp.getSource(), *reassociation);
    }
    rewriter.replaceOpWithNewOp<InsertOpTy>(
        insertSliceOp, reshapedSource, insertSliceOp.getDest(),
        insertSliceOp.getMixedOffsets(), insertSliceOp.getMixedSizes(),
        insertSliceOp.getMixedStrides());
    return success();
  }
};
} // namespace
/// Patterns that are used to canonicalize the use of unit-extent dims for
/// broadcasting.
void mlir::linalg::populateFoldUnitExtentDimsViaReshapesPatterns(
    RewritePatternSet &patterns) {
  auto *context = patterns.getContext();
  patterns.add<ReplaceUnitExtents>(context,
                                   RankReductionStrategy::ReassociativeReshape);
  // TODO: Patterns unrelated to unit dim folding should be factored out.
  patterns.add<FoldUnitDimLoops, RankReducedExtractSliceOp,
               RankReducedInsertSliceOp<tensor::InsertSliceOp>,
               RankReducedInsertSliceOp<tensor::ParallelInsertSliceOp>>(
      context);
  linalg::FillOp::getCanonicalizationPatterns(patterns, context);
  tensor::CollapseShapeOp::getCanonicalizationPatterns(patterns, context);
  tensor::EmptyOp::getCanonicalizationPatterns(patterns, context);
  tensor::ExpandShapeOp::getCanonicalizationPatterns(patterns, context);
  tensor::populateFoldTensorEmptyPatterns(patterns);
  memref::populateResolveRankedShapeTypeResultDimsPatterns(patterns);
  memref::populateResolveShapedTypeResultDimsPatterns(patterns);
}
void mlir::linalg::populateFoldUnitExtentDimsViaSlicesPatterns(
    RewritePatternSet &patterns) {
  auto *context = patterns.getContext();
  patterns.add<ReplaceUnitExtents>(context,
                                   RankReductionStrategy::ExtractInsertSlice);
  patterns.add<FoldUnitDimLoops>(context);
  // TODO: Patterns unrelated to unit dim folding should be factored out.
  linalg::FillOp::getCanonicalizationPatterns(patterns, context);
  tensor::EmptyOp::getCanonicalizationPatterns(patterns, context);
  tensor::populateFoldTensorEmptyPatterns(patterns);
  memref::populateResolveRankedShapeTypeResultDimsPatterns(patterns);
  memref::populateResolveShapedTypeResultDimsPatterns(patterns);
}
void mlir::linalg::populateMoveInitOperandsToInputPattern(
    RewritePatternSet &patterns) {
  patterns.add<MoveInitOperandsToInput>(patterns.getContext());
}
namespace {
/// Pass that removes unit-extent dims within generic ops.
struct LinalgFoldUnitExtentDimsPass
    : public impl::LinalgFoldUnitExtentDimsBase<LinalgFoldUnitExtentDimsPass> {
  void runOnOperation() override {
    Operation *op = getOperation();
    MLIRContext *context = op->getContext();
    RewritePatternSet patterns(context);
    if (foldOneTripLoopsOnly) {
      patterns.add<FoldUnitDimLoops, MoveInitOperandsToInput>(context);
    } else if (useRankReducingSlices) {
      populateFoldUnitExtentDimsViaSlicesPatterns(patterns);
      populateMoveInitOperandsToInputPattern(patterns);
    } else {
      populateFoldUnitExtentDimsViaReshapesPatterns(patterns);
      populateMoveInitOperandsToInputPattern(patterns);
    }
    (void)applyPatternsAndFoldGreedily(op, std::move(patterns));
  }
};
} // namespace
std::unique_ptr<Pass> mlir::createLinalgFoldUnitExtentDimsPass() {
  return std::make_unique<LinalgFoldUnitExtentDimsPass>();
}
 |