| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 
 | //===- Loops.cpp - conversion from Linalg named and generic ops to loops --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/Utils/AffineCanonicalizationUtils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/FoldUtils.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/TypeSwitch.h"
namespace mlir {
#define GEN_PASS_DEF_LINALGLOWERTOAFFINELOOPS
#define GEN_PASS_DEF_LINALGLOWERTOLOOPS
#define GEN_PASS_DEF_LINALGLOWERTOPARALLELLOOPS
#include "mlir/Dialect/Linalg/Passes.h.inc"
} // namespace mlir
using namespace mlir;
using namespace mlir::linalg;
static SmallVector<Value> makeCanonicalAffineApplies(OpBuilder &b, Location loc,
                                                     AffineMap map,
                                                     ArrayRef<Value> vals) {
  if (map.isEmpty())
    return {};
  assert(map.getNumInputs() == vals.size());
  SmallVector<Value> res;
  res.reserve(map.getNumResults());
  auto dims = map.getNumDims();
  for (auto e : map.getResults()) {
    auto exprMap = AffineMap::get(dims, map.getNumSymbols(), e);
    SmallVector<Value> operands(vals.begin(), vals.end());
    canonicalizeMapAndOperands(&exprMap, &operands);
    res.push_back(b.create<AffineApplyOp>(loc, exprMap, operands));
  }
  return res;
}
template <typename LoadOpTy, typename StoreOpTy, typename OpType>
static void inlineRegionAndEmitStore(OpBuilder &b, Location loc, OpType op,
                                     ArrayRef<Value> indexedValues,
                                     ArrayRef<SmallVector<Value>> indexing,
                                     ArrayRef<Value> outputBuffers) {
  auto &block = op->getRegion(0).front();
  IRMapping map;
  map.map(block.getArguments(), indexedValues);
  for (auto &op : block.without_terminator()) {
    auto *newOp = b.clone(op, map);
    map.map(op.getResults(), newOp->getResults());
  }
  Operation *terminator = block.getTerminator();
  for (OpOperand &operand : terminator->getOpOperands()) {
    Value toStore = map.lookupOrDefault(operand.get());
    b.create<StoreOpTy>(loc, toStore, outputBuffers[operand.getOperandNumber()],
                        indexing[operand.getOperandNumber()]);
  }
}
// Returns a pair that contains input indices and output indices of a
// SingleInputPoolingOp `op`.
struct InputAndOutputIndices {
  SmallVector<Value> inputs;
  SmallVector<Value> outputs;
};
template <typename SingleInputPoolingOp>
static InputAndOutputIndices
getInputAndOutputIndices(OpBuilder &b, Location loc, ArrayRef<Value> allIvs,
                         SingleInputPoolingOp op) {
  auto mapsRange = op.getIndexingMapsArray();
  auto maps = llvm::to_vector<8>(
      llvm::map_range(mapsRange, [](AffineMapAttr a) { return a.getValue(); }));
  return InputAndOutputIndices{
      makeCanonicalAffineApplies(b, loc, maps[0], allIvs),
      makeCanonicalAffineApplies(b, loc, maps[2], allIvs)};
}
/// Emits the MLIR for the scalar part of the generic op by:
///   1. Emitting load ops for each input and output view in order. This is
///      achieved by applying the appropriate input or output map to the
///      enclosing induction variables.
///   2. Emitting a call to `op.fun()` that takes as arguments the scalars
///      from point 1. above.
///   3. Emitting store ops to store the results of 2. to the output
///      views.
///
/// An example output may resemble:
///
/// ```
///    scf.for %i = %c0 to %0 step %c1 {
///      scf.for %j = %c0 to %1 step %c1 {
///        scf.for %k = %c0 to %4 step %c1 {
///          %11 = load %arg0[%i, %j] :
///            memref<?x?xf32, stride_specification>
///          %12 = load %arg1[%i, %j, %k] :
///            memref<?x?x?xf32, stride_specification>
///          %13 = load %arg2[%i, %k, %j] :
///            memref<?x?x?xf32, stride_specification>
///          %14:2 = call @foo(%11, %12, %13) : (f32, f32, f32) -> (f32, f32)
///          store %14#0, %arg1[%i, %j, %k] :
///            memref<?x?x?Xf32, stride_specification>
///          store %14#1, %arg2[%i, %k, %j] :
///            memref<?x?x?Xf32, stride_specification>
///       }
///      }
///    }
/// ```
template <typename LoadOpTy, typename StoreOpTy>
static void emitScalarImplementation(OpBuilder &b, Location loc,
                                     ArrayRef<Value> allIvs,
                                     LinalgOp linalgOp) {
  assert(linalgOp.hasBufferSemantics() &&
         "expected linalg op with buffer semantics");
  SmallVector<Value> indexedValues;
  indexedValues.reserve(linalgOp->getNumOperands());
  auto allIvsPlusDims = SmallVector<Value>(allIvs.begin(), allIvs.end());
  // TODO: Avoid the loads if the corresponding argument of the
  // region has no uses.
  // 1.a. Emit load from input operand or for scalars access the operand itself.
  for (OpOperand *inputOperand : linalgOp.getDpsInputOperands()) {
    if (linalgOp.isScalar(inputOperand)) {
      indexedValues.push_back(inputOperand->get());
      continue;
    }
    auto indexing = makeCanonicalAffineApplies(
        b, loc, linalgOp.getMatchingIndexingMap(inputOperand), allIvsPlusDims);
    indexedValues.push_back(
        b.create<LoadOpTy>(loc, inputOperand->get(), indexing));
  }
  // 1.b. Emit load from output views.
  for (OpOperand *outputOperand : linalgOp.getDpsInitOperands()) {
    SmallVector<Value> indexing = makeCanonicalAffineApplies(
        b, loc, linalgOp.getMatchingIndexingMap(outputOperand), allIvsPlusDims);
    indexedValues.push_back(
        b.create<LoadOpTy>(loc, outputOperand->get(), indexing));
  }
  // TODO: When a region inliner exists, use it.
  // 2. Inline region, currently only works for a single basic block.
  // 3. Emit store.
  SmallVector<SmallVector<Value>, 8> indexing;
  SmallVector<Value> outputBuffers;
  for (OpOperand *outputOperand : linalgOp.getDpsInitOperands()) {
    if (!outputOperand->get().getType().isa<MemRefType>())
      continue;
    indexing.push_back(makeCanonicalAffineApplies(
        b, loc, linalgOp.getMatchingIndexingMap(outputOperand),
        allIvsPlusDims));
    outputBuffers.push_back(outputOperand->get());
  }
  inlineRegionAndEmitStore<LoadOpTy, StoreOpTy>(b, loc, linalgOp, indexedValues,
                                                indexing, outputBuffers);
}
/// Replace the index operations in the body of the loop nest by the matching
/// induction variables.
static void replaceIndexOpsByInductionVariables(LinalgOp linalgOp,
                                                PatternRewriter &rewriter,
                                                ArrayRef<Operation *> loopOps) {
  // Extract the induction variables of the loop nest from outer to inner.
  SmallVector<Value> allIvs;
  for (Operation *loopOp : loopOps) {
    llvm::TypeSwitch<Operation *>(loopOp)
        .Case([&](scf::ParallelOp parallelOp) {
          allIvs.append(parallelOp.getInductionVars().begin(),
                        parallelOp.getInductionVars().end());
        })
        .Case([&](scf::ForOp forOp) {
          allIvs.push_back(forOp.getInductionVar());
        })
        .Case([&](AffineForOp affineForOp) {
          allIvs.push_back(affineForOp.getInductionVar());
        })
        .Default([&](Operation *op) { assert(false && "unexpected op"); });
  }
  assert(linalgOp.getNumLoops() == allIvs.size() &&
         "expected the number of loops and induction variables to match");
  // Replace the index operations in the body of the innermost loop op.
  if (!loopOps.empty()) {
    LoopLikeOpInterface loopOp = loopOps.back();
    for (IndexOp indexOp :
         llvm::make_early_inc_range(loopOp.getLoopBody().getOps<IndexOp>()))
      rewriter.replaceOp(indexOp, allIvs[indexOp.getDim()]);
  }
}
template <typename LoopTy>
static FailureOr<LinalgLoops> linalgOpToLoopsImpl(PatternRewriter &rewriter,
                                                  LinalgOp linalgOp) {
  using LoadOpTy = std::conditional_t<std::is_same<LoopTy, AffineForOp>::value,
                                      AffineLoadOp, memref::LoadOp>;
  using StoreOpTy = std::conditional_t<std::is_same<LoopTy, AffineForOp>::value,
                                       AffineStoreOp, memref::StoreOp>;
  // The flattened loopToOperandRangesMaps is expected to be an invertible
  // permutation map (which is asserted in the inverse calculation).
  assert(linalgOp.hasBufferSemantics() &&
         "expected linalg op with buffer semantics");
  auto loopRanges = linalgOp.createLoopRanges(rewriter, linalgOp.getLoc());
  auto iteratorTypes = linalgOp.getIteratorTypesArray();
  SmallVector<Value> allIvs;
  GenerateLoopNest<LoopTy>::doit(
      rewriter, linalgOp.getLoc(), loopRanges, linalgOp, iteratorTypes,
      [&](OpBuilder &b, Location loc, ValueRange ivs,
          ValueRange operandValuesToUse) -> scf::ValueVector {
        assert(operandValuesToUse == linalgOp->getOperands() &&
               "expect operands are captured and not passed by loop argument");
        allIvs.append(ivs.begin(), ivs.end());
        emitScalarImplementation<LoadOpTy, StoreOpTy>(b, loc, allIvs, linalgOp);
        return scf::ValueVector{};
      });
  // Number of loop ops might be different from the number of ivs since some
  // loops like affine.parallel and scf.parallel have multiple ivs.
  SetVector<Operation *> loopSet;
  for (Value iv : allIvs) {
    if (!iv)
      return failure();
    // The induction variable is a block argument of the entry block of the
    // loop operation.
    BlockArgument ivVal = iv.dyn_cast<BlockArgument>();
    if (!ivVal)
      return failure();
    loopSet.insert(ivVal.getOwner()->getParentOp());
  }
  LinalgLoops loops(loopSet.begin(), loopSet.end());
  // Replace all index operations in the loop body.
  replaceIndexOpsByInductionVariables(linalgOp, rewriter, loops);
  return loops;
}
namespace {
template <typename LoopType>
class LinalgRewritePattern : public RewritePattern {
public:
  LinalgRewritePattern(MLIRContext *context)
      : RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {}
  LogicalResult matchAndRewrite(Operation *op,
                                PatternRewriter &rewriter) const override {
    auto linalgOp = dyn_cast<LinalgOp>(op);
    if (!isa<LinalgOp>(op))
      return failure();
    if (failed(linalgOpToLoopsImpl<LoopType>(rewriter, linalgOp)))
      return failure();
    rewriter.eraseOp(op);
    return success();
  }
};
/// Local folding pattern for AffineApplyOp that we can apply greedily.
/// This replaces AffineApplyOp by the proper value in cases where the
/// associated map is trivial.
/// A trivial map here is defined as a map with a single result and either:
///   1. Zero operand + returns a single AffineConstantExpr
///   2. One operand + returns a single AffineDimExpr
///   3. One operand + returns a single AffineSymbolExpr
//
/// In the first case, the AffineApplyOp is replaced by a new constant. In the
/// other cases, it is replaced by its unique operand.
struct FoldAffineOp : public RewritePattern {
  FoldAffineOp(MLIRContext *context)
      : RewritePattern(AffineApplyOp::getOperationName(), 0, context) {}
  LogicalResult matchAndRewrite(Operation *op,
                                PatternRewriter &rewriter) const override {
    AffineApplyOp affineApplyOp = cast<AffineApplyOp>(op);
    auto map = affineApplyOp.getAffineMap();
    if (map.getNumResults() != 1 || map.getNumInputs() > 1)
      return failure();
    AffineExpr expr = map.getResult(0);
    if (map.getNumInputs() == 0) {
      if (auto val = expr.dyn_cast<AffineConstantExpr>()) {
        rewriter.replaceOpWithNewOp<arith::ConstantIndexOp>(op, val.getValue());
        return success();
      }
      return failure();
    }
    if (expr.dyn_cast<AffineDimExpr>() || expr.dyn_cast<AffineSymbolExpr>()) {
      rewriter.replaceOp(op, op->getOperand(0));
      return success();
    }
    return failure();
  }
};
template <typename LoopType>
static void lowerLinalgToLoopsImpl(func::FuncOp funcOp) {
  MLIRContext *context = funcOp.getContext();
  RewritePatternSet patterns(context);
  patterns.add<LinalgRewritePattern<LoopType>>(context);
  memref::DimOp::getCanonicalizationPatterns(patterns, context);
  tensor::DimOp::getCanonicalizationPatterns(patterns, context);
  AffineApplyOp::getCanonicalizationPatterns(patterns, context);
  patterns.add<FoldAffineOp>(context);
  // Just apply the patterns greedily.
  (void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns));
}
struct LowerToAffineLoops
    : public impl::LinalgLowerToAffineLoopsBase<LowerToAffineLoops> {
  void getDependentDialects(DialectRegistry ®istry) const override {
    registry.insert<memref::MemRefDialect>();
  }
  void runOnOperation() override {
    lowerLinalgToLoopsImpl<AffineForOp>(getOperation());
  }
};
struct LowerToLoops : public impl::LinalgLowerToLoopsBase<LowerToLoops> {
  void getDependentDialects(DialectRegistry ®istry) const override {
    registry.insert<memref::MemRefDialect, scf::SCFDialect>();
  }
  void runOnOperation() override {
    lowerLinalgToLoopsImpl<scf::ForOp>(getOperation());
  }
};
struct LowerToParallelLoops
    : public impl::LinalgLowerToParallelLoopsBase<LowerToParallelLoops> {
  void runOnOperation() override {
    lowerLinalgToLoopsImpl<scf::ParallelOp>(getOperation());
  }
};
} // namespace
std::unique_ptr<OperationPass<func::FuncOp>>
mlir::createConvertLinalgToLoopsPass() {
  return std::make_unique<LowerToLoops>();
}
std::unique_ptr<OperationPass<func::FuncOp>>
mlir::createConvertLinalgToParallelLoopsPass() {
  return std::make_unique<LowerToParallelLoops>();
}
std::unique_ptr<OperationPass<func::FuncOp>>
mlir::createConvertLinalgToAffineLoopsPass() {
  return std::make_unique<LowerToAffineLoops>();
}
/// Emits a loop nest of `affine.for` with the proper body for `linalgOp`.
FailureOr<LinalgLoops>
mlir::linalg::linalgOpToAffineLoops(PatternRewriter &rewriter,
                                    LinalgOp linalgOp) {
  return linalgOpToLoopsImpl<AffineForOp>(rewriter, linalgOp);
}
/// Emits a loop nest of `scf.for` with the proper body for `linalgOp`.
FailureOr<LinalgLoops> mlir::linalg::linalgOpToLoops(PatternRewriter &rewriter,
                                                     LinalgOp linalgOp) {
  return linalgOpToLoopsImpl<scf::ForOp>(rewriter, linalgOp);
}
/// Emits a loop nest of `scf.parallel` with the proper body for `linalgOp`.
FailureOr<LinalgLoops>
mlir::linalg::linalgOpToParallelLoops(PatternRewriter &rewriter,
                                      LinalgOp linalgOp) {
  return linalgOpToLoopsImpl<scf::ParallelOp>(rewriter, linalgOp);
}
 |