1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
//===- CodegenEnv.cpp - Code generation environment class ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "CodegenEnv.h"
#include <optional>
using namespace mlir;
using namespace mlir::sparse_tensor;
//===----------------------------------------------------------------------===//
// Code generation environment constructor and general methods
//===----------------------------------------------------------------------===//
CodegenEnv::CodegenEnv(linalg::GenericOp linop, SparsificationOptions opts,
unsigned numTensors, unsigned numLoops,
unsigned numFilterLoops)
: linalgOp(linop), sparseOptions(opts),
latticeMerger(numTensors, numLoops, numFilterLoops), loopEmitter(),
topSort(), sparseOut(nullptr), outerParNest(-1u), insChain(), expValues(),
expFilled(), expAdded(), expCount(), redVal(), redExp(-1u),
redCustom(-1u) {}
void CodegenEnv::startEmit(OpOperand *so, unsigned lv) {
assert(sparseOut == nullptr && insChain == nullptr &&
"must only start emitting once");
sparseOut = so;
outerParNest = lv;
if (sparseOut) {
insChain = sparseOut->get();
latticeMerger.setHasSparseOut(true);
}
// Initialize loop emitter.
SmallVector<Value> tensors;
for (OpOperand &t : linalgOp->getOpOperands())
tensors.push_back(t.get());
loopEmitter.initialize(tensors,
StringAttr::get(linalgOp.getContext(),
linalg::GenericOp::getOperationName()),
/*hasOutput=*/true,
/*isSparseOut=*/sparseOut != nullptr, topSort);
}
std::optional<Operation *> CodegenEnv::genLoopBoundary(
function_ref<std::optional<Operation *>(MutableArrayRef<Value> parameters)>
callback) {
SmallVector<Value> params;
if (isReduc())
params.push_back(redVal);
if (isExpand())
params.push_back(expCount);
if (insChain != nullptr)
params.push_back(insChain);
auto r = callback(params); // may update parameters
unsigned i = 0;
if (isReduc())
updateReduc(params[i++]);
if (isExpand())
updateExpandCount(params[i++]);
if (insChain != nullptr)
updateInsertionChain(params[i]);
return r;
}
//===----------------------------------------------------------------------===//
// Code generation environment topological sort methods
//===----------------------------------------------------------------------===//
ArrayRef<unsigned> CodegenEnv::getTopSortSlice(size_t n, size_t m) const {
return ArrayRef<unsigned>(topSort).slice(n, m);
}
ArrayRef<unsigned> CodegenEnv::getLoopCurStack() const {
return getTopSortSlice(0, loopEmitter.getCurrentDepth());
}
Value CodegenEnv::getLoopIdxValue(size_t loopIdx) const {
for (unsigned lv = 0, lve = topSort.size(); lv < lve; lv++)
if (topSort[lv] == loopIdx)
return loopEmitter.getLoopIV(lv);
llvm_unreachable("invalid loop index");
}
//===----------------------------------------------------------------------===//
// Code generation environment sparse tensor output and expansion methods
//===----------------------------------------------------------------------===//
void CodegenEnv::updateInsertionChain(Value chain) {
assert(sparseOut != nullptr && insChain != nullptr);
insChain = chain;
}
bool CodegenEnv::atExpandLevel(OpOperand *o, unsigned rank, unsigned lv) const {
return sparseOut == o && outerParNest == rank - 1 && outerParNest == lv;
}
void CodegenEnv::startExpand(Value values, Value filled, Value added,
Value count) {
assert(sparseOut != nullptr && expValues == nullptr);
expValues = values;
expFilled = filled;
expAdded = added;
expCount = count;
}
void CodegenEnv::updateExpandCount(Value count) {
assert(sparseOut != nullptr && expValues != nullptr);
expCount = count;
}
void CodegenEnv::endExpand() {
assert(sparseOut != nullptr && expValues != nullptr);
expValues = expFilled = expAdded = expCount = Value();
}
//===----------------------------------------------------------------------===//
// Code generation environment reduction methods
//===----------------------------------------------------------------------===//
void CodegenEnv::startReduc(unsigned exp, Value val) {
assert(redExp == -1u && exp != -1u);
redExp = exp;
updateReduc(val);
}
void CodegenEnv::updateReduc(Value val) {
assert(redExp != -1u);
redVal = exp(redExp).val = val;
}
Value CodegenEnv::endReduc() {
Value val = redVal;
updateReduc(Value());
redExp = -1u;
return val;
}
void CodegenEnv::startCustomReduc(unsigned exp) {
assert(redCustom == -1u && exp != -1u);
redCustom = exp;
}
Value CodegenEnv::getCustomRedId() {
assert(redCustom != -1u);
return dyn_cast<sparse_tensor::ReduceOp>(exp(redCustom).op).getIdentity();
}
void CodegenEnv::endCustomReduc() {
assert(redCustom != -1u);
redCustom = -1u;
}
|