1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
|
//===- CodegenUtils.h - Utilities for generating MLIR -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This header file defines utilities for generating MLIR.
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_CODEGENUTILS_H_
#define MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_CODEGENUTILS_H_
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/SparseTensor/IR/Enums.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/Utils/ReshapeOpsUtils.h"
#include "mlir/IR/Builders.h"
namespace mlir {
class Location;
class Type;
class Value;
namespace sparse_tensor {
/// Shorthand aliases for the `emitCInterface` argument to `getFunc()`,
/// `createFuncCall()`, and `replaceOpWithFuncCall()`.
enum class EmitCInterface : bool { Off = false, On = true };
//===----------------------------------------------------------------------===//
// ExecutionEngine/SparseTensorUtils helper functions.
//===----------------------------------------------------------------------===//
/// Converts an overhead storage bitwidth to its internal type-encoding.
OverheadType overheadTypeEncoding(unsigned width);
/// Converts an overhead storage type to its internal type-encoding.
OverheadType overheadTypeEncoding(Type tp);
/// Converts the internal type-encoding for overhead storage to an mlir::Type.
Type getOverheadType(Builder &builder, OverheadType ot);
/// Returns the OverheadType for pointer overhead storage.
OverheadType pointerOverheadTypeEncoding(SparseTensorEncodingAttr enc);
/// Returns the OverheadType for index overhead storage.
OverheadType indexOverheadTypeEncoding(SparseTensorEncodingAttr enc);
/// Returns the mlir::Type for pointer overhead storage.
Type getPointerOverheadType(Builder &builder, SparseTensorEncodingAttr enc);
/// Returns the mlir::Type for index overhead storage.
Type getIndexOverheadType(Builder &builder, SparseTensorEncodingAttr enc);
/// Convert OverheadType to its function-name suffix.
StringRef overheadTypeFunctionSuffix(OverheadType ot);
/// Converts an overhead storage type to its function-name suffix.
StringRef overheadTypeFunctionSuffix(Type overheadTp);
/// Converts a primary storage type to its internal type-encoding.
PrimaryType primaryTypeEncoding(Type elemTp);
/// Convert PrimaryType to its function-name suffix.
StringRef primaryTypeFunctionSuffix(PrimaryType pt);
/// Converts a primary storage type to its function-name suffix.
StringRef primaryTypeFunctionSuffix(Type elemTp);
//===----------------------------------------------------------------------===//
// Misc code generators and utilities.
//===----------------------------------------------------------------------===//
template <typename T>
inline RankedTensorType getRankedTensorType(T t) {
return t.getType().template cast<RankedTensorType>();
}
/// Generates a 1-valued attribute of the given type. This supports
/// all the same types as `getZeroAttr`; however, unlike `getZeroAttr`,
/// for unsupported types we raise `llvm_unreachable` rather than
/// returning a null attribute.
Attribute getOneAttr(Builder &builder, Type tp);
/// Generates the comparison `v != 0` where `v` is of numeric type.
/// For floating types, we use the "unordered" comparator (i.e., returns
/// true if `v` is NaN).
Value genIsNonzero(OpBuilder &builder, Location loc, Value v);
/// Computes the shape of destination tensor of a reshape operator. This is only
/// used when operands have dynamic shape. The shape of the destination is
/// stored into dstShape.
void genReshapeDstShape(Location loc, PatternRewriter &rewriter,
SmallVectorImpl<Value> &dstShape,
ArrayRef<Value> srcShape,
ArrayRef<int64_t> staticDstShape,
ArrayRef<ReassociationIndices> reassociation);
/// Translate indices during a reshaping operation.
void translateIndicesArray(OpBuilder &builder, Location loc,
ArrayRef<ReassociationIndices> reassociation,
ValueRange srcIndices, ArrayRef<Value> srcShape,
ArrayRef<Value> dstShape,
SmallVectorImpl<Value> &dstIndices);
/// Returns a function reference (first hit also inserts into module). Sets
/// the "_emit_c_interface" on the function declaration when requested,
/// so that LLVM lowering generates a wrapper function that takes care
/// of ABI complications with passing in and returning MemRefs to C functions.
FlatSymbolRefAttr getFunc(ModuleOp module, StringRef name, TypeRange resultType,
ValueRange operands, EmitCInterface emitCInterface);
/// Creates a `CallOp` to the function reference returned by `getFunc()` in
/// the builder's module.
func::CallOp createFuncCall(OpBuilder &builder, Location loc, StringRef name,
TypeRange resultType, ValueRange operands,
EmitCInterface emitCInterface);
/// Returns the equivalent of `void*` for opaque arguments to the
/// execution engine.
Type getOpaquePointerType(OpBuilder &builder);
/// Generates an uninitialized temporary buffer of the given size and
/// type, but returns it as type `memref<? x $tp>` (rather than as type
/// `memref<$sz x $tp>`).
Value genAlloca(OpBuilder &builder, Location loc, Value sz, Type tp);
/// Generates an uninitialized temporary buffer of the given size and
/// type, and returns it as type `memref<? x $tp>` (staticShape=false) or
/// `memref<$sz x $tp>` (staticShape=true).
Value genAlloca(OpBuilder &builder, Location loc, unsigned sz, Type tp,
bool staticShape = false);
/// Generates an uninitialized temporary buffer with room for one value
/// of the given type, and returns the `memref<$tp>`.
Value genAllocaScalar(OpBuilder &builder, Location loc, Type tp);
/// Generates a temporary buffer, initializes it with the given contents,
/// and returns it as type `memref<? x $tp>` (rather than specifying the
/// size of the buffer).
Value allocaBuffer(OpBuilder &builder, Location loc, ValueRange values);
/// Generates code to allocate a buffer of the given type, and zero
/// initialize it. If the buffer type has any dynamic sizes, then the
/// `sizes` parameter should be as filled by sizesFromPtr(); that way
/// we can reuse the genDimSizeCall() results generated by sizesFromPtr().
Value allocDenseTensor(OpBuilder &builder, Location loc,
RankedTensorType tensorTp, ValueRange sizes);
/// Generates code to deallocate a dense buffer.
void deallocDenseTensor(OpBuilder &builder, Location loc, Value buffer);
/// Generates the code to read the value from tensor[ivs]. The generated code
/// looks like the following and the insertion point after this routine is
/// inside the if-then branch behind the assignment to ind.
/// if (tensor[ivs] != 0)
/// insert_point
Value genValueForDense(OpBuilder &builder, Location loc, Value tensor,
ValueRange ivs);
/// Generates the loop structure to iterate over a dense tensor or a sparse
/// tensor constant to support the lowering of dense-to-sparse convert operator.
//
// The loop to iterate a dense tensor:
// for i1 in dim1
// ..
// for ik in dimk
// val = a[i1,..,ik]
// if val != 0
// loop-body
//
// The loop to iterate a sparse tensor constant:
// for i in range(NNZ)
// val = values[i]
// [i1,..,ik] = indices[i]
// loop-body
void genDenseTensorOrSparseConstantIterLoop(
OpBuilder &builder, Location loc, Value src, unsigned rank,
function_ref<void(OpBuilder &, Location, Value, ValueRange)> bodyBuilder);
/// Populates given sizes array from dense tensor or sparse tensor constant.
void sizesFromSrc(OpBuilder &builder, SmallVectorImpl<Value> &sizes,
Location loc, Value src);
/// Generates a 1D MemRefType with a dynamic size. When withLayout is set, the
/// returned memref has a layout has unknown strides and offsets. Otherwise,
/// a memref with a standard unit stride zero offset layout is returned.
inline MemRefType get1DMemRefType(Type etp, bool withLayout) {
auto layout = withLayout ? StridedLayoutAttr::StridedLayoutAttr::get(
etp.getContext(), ShapedType::kDynamic,
{ShapedType::kDynamic})
: StridedLayoutAttr();
return MemRefType::get(ShapedType::kDynamic, etp, layout);
}
/// Scans to top of generated loop.
Operation *getTop(Operation *op);
/// Iterate over a sparse constant, generates constantOp for value and indices.
/// E.g.,
/// sparse<[ [0], [28], [31] ],
/// [ (-5.13, 2.0), (3.0, 4.0), (5.0, 6.0) ] >
/// =>
/// %c1 = arith.constant 0
/// %v1 = complex.constant (5.13, 2.0)
/// callback({%c1}, %v1)
///
/// %c2 = arith.constant 28
/// %v2 = complex.constant (3.0, 4.0)
/// callback({%c2}, %v2)
///
/// %c3 = arith.constant 31
/// %v3 = complex.constant (5.0, 6.0)
/// callback({%c3}, %v3)
void foreachInSparseConstant(
Location loc, RewriterBase &rewriter, SparseElementsAttr attr,
function_ref<void(ArrayRef<Value>, Value)> callback);
/// Converts the vector indices and store it into the memory pointed by
/// `ind`, apply (optional) `offset` on `offsetDim`.
void storeIndices(OpBuilder &builder, Location loc, unsigned rank, Value ind,
ValueRange ivs, unsigned offsetDim = 0,
Value offset = Value());
/// Reshapes the linear values buffer for an annotated all dense sparse tensor
/// to match the shape of the corresponding dense tensor to support direct
/// access of the buffer through indices.
Value reshapeValuesToLevels(OpBuilder &builder, Location loc,
SparseTensorEncodingAttr enc,
const SmallVectorImpl<Value> &dimSizes,
Value valuesBuffer, Value idxBuffer);
//===----------------------------------------------------------------------===//
// Inlined constant generators.
//
// All these functions are just wrappers to improve code legibility;
// therefore, we mark them as `inline` to avoid introducing any additional
// overhead due to the legibility.
//
// TODO: Ideally these should move upstream, so that we don't
// develop a design island. However, doing so will involve
// substantial design work. For related prior discussion, see
// <https://llvm.discourse.group/t/evolving-builder-apis-based-on-lessons-learned-from-edsc/879>
//===----------------------------------------------------------------------===//
/// Generates a 0-valued constant of the given type. In addition to
/// the scalar types (`ComplexType`, ``FloatType`, `IndexType`,
/// `IntegerType`), this also works for `RankedTensorType` and `VectorType`
/// (for which it generates a constant `DenseElementsAttr` of zeros).
inline Value constantZero(OpBuilder &builder, Location loc, Type tp) {
if (auto ctp = tp.dyn_cast<ComplexType>()) {
auto zeroe = builder.getZeroAttr(ctp.getElementType());
auto zeroa = builder.getArrayAttr({zeroe, zeroe});
return builder.create<complex::ConstantOp>(loc, tp, zeroa);
}
return builder.create<arith::ConstantOp>(loc, tp, builder.getZeroAttr(tp));
}
/// Generates a 1-valued constant of the given type. This supports all
/// the same types as `constantZero`.
inline Value constantOne(OpBuilder &builder, Location loc, Type tp) {
if (auto ctp = tp.dyn_cast<ComplexType>()) {
auto zeroe = builder.getZeroAttr(ctp.getElementType());
auto onee = getOneAttr(builder, ctp.getElementType());
auto zeroa = builder.getArrayAttr({onee, zeroe});
return builder.create<complex::ConstantOp>(loc, tp, zeroa);
}
return builder.create<arith::ConstantOp>(loc, tp, getOneAttr(builder, tp));
}
/// Generates a constant of `index` type.
inline Value constantIndex(OpBuilder &builder, Location loc, int64_t i) {
return builder.create<arith::ConstantIndexOp>(loc, i);
}
/// Generates a constant of `i32` type.
inline Value constantI32(OpBuilder &builder, Location loc, int32_t i) {
return builder.create<arith::ConstantIntOp>(loc, i, 32);
}
/// Generates a constant of `i16` type.
inline Value constantI16(OpBuilder &builder, Location loc, int16_t i) {
return builder.create<arith::ConstantIntOp>(loc, i, 16);
}
/// Generates a constant of `i8` type.
inline Value constantI8(OpBuilder &builder, Location loc, int8_t i) {
return builder.create<arith::ConstantIntOp>(loc, i, 8);
}
/// Generates a constant of `i1` type.
inline Value constantI1(OpBuilder &builder, Location loc, bool b) {
return builder.create<arith::ConstantIntOp>(loc, b, 1);
}
/// Generates a constant of the given `Action`.
inline Value constantAction(OpBuilder &builder, Location loc, Action action) {
return constantI32(builder, loc, static_cast<uint32_t>(action));
}
/// Generates a constant of the internal type-encoding for overhead storage.
inline Value constantOverheadTypeEncoding(OpBuilder &builder, Location loc,
unsigned width) {
return constantI32(builder, loc,
static_cast<uint32_t>(overheadTypeEncoding(width)));
}
/// Generates a constant of the internal type-encoding for pointer
/// overhead storage.
inline Value constantPointerTypeEncoding(OpBuilder &builder, Location loc,
SparseTensorEncodingAttr enc) {
return constantOverheadTypeEncoding(builder, loc, enc.getPointerBitWidth());
}
/// Generates a constant of the internal type-encoding for index overhead
/// storage.
inline Value constantIndexTypeEncoding(OpBuilder &builder, Location loc,
SparseTensorEncodingAttr enc) {
return constantOverheadTypeEncoding(builder, loc, enc.getIndexBitWidth());
}
/// Generates a constant of the internal type-encoding for primary storage.
inline Value constantPrimaryTypeEncoding(OpBuilder &builder, Location loc,
Type elemTp) {
return constantI32(builder, loc,
static_cast<uint32_t>(primaryTypeEncoding(elemTp)));
}
/// Generates a constant of the internal dimension level type encoding.
inline Value constantDimLevelTypeEncoding(OpBuilder &builder, Location loc,
DimLevelType dlt) {
return constantI8(builder, loc, static_cast<uint8_t>(dlt));
}
inline bool isZeroRankedTensorOrScalar(Type type) {
auto rtp = type.dyn_cast<RankedTensorType>();
return !rtp || rtp.getRank() == 0;
}
/// Infers the result type and generates ToPointersOp.
Value genToPointers(OpBuilder &builder, Location loc, Value tensor, uint64_t d);
/// Infers the result type and generates ToIndicesOp. If the dim is within a COO
/// region, the result type is a memref with unknown stride and offset.
/// Otherwise, the result type is a memref without any specified layout.
Value genToIndices(OpBuilder &builder, Location loc, Value tensor, uint64_t d,
uint64_t cooStart);
/// Infers the result type and generates ToValuesOp.
Value genToValues(OpBuilder &builder, Location loc, Value tensor);
/// Generates code to retrieve the values size for the sparse tensor.
Value genValMemSize(OpBuilder &builder, Location loc, Value tensor);
} // namespace sparse_tensor
} // namespace mlir
#endif // MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_CODEGENUTILS_H_
|