1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
|
//===- LoopEmitter.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "LoopEmitter.h"
#include "CodegenUtils.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
using namespace mlir;
using namespace mlir::sparse_tensor;
//===----------------------------------------------------------------------===//
// File local helper functions.
//===----------------------------------------------------------------------===//
/// Generates a pointer/index load from the sparse storage scheme. Narrower
/// data types need to be zero extended before casting the value into the
/// index type used for looping and indexing.
static Value genIndexLoad(OpBuilder &builder, Location loc, Value ptr,
Value s) {
// For the scalar case, we simply zero extend narrower indices into 64-bit
// values before casting to index without a performance penalty. Here too,
// however, indices that already are 64-bit, in theory, cannot express the
// full range as explained above.
Value load = builder.create<memref::LoadOp>(loc, ptr, s);
if (!load.getType().isa<IndexType>()) {
if (load.getType().getIntOrFloatBitWidth() < 64)
load = builder.create<arith::ExtUIOp>(loc, builder.getI64Type(), load);
load =
builder.create<arith::IndexCastOp>(loc, builder.getIndexType(), load);
}
return load;
}
//===----------------------------------------------------------------------===//
// Sparse tensor loop emitter class implementations
//===----------------------------------------------------------------------===//
Value LoopEmitter::genAddress(OpBuilder &builder, Location loc, size_t tid,
size_t dim, Value iv) {
Value p = dim == 0 ? constantIndex(builder, loc, 0) : pidxs[tid][dim - 1];
Value mul = builder.create<arith::MulIOp>(loc, highs[tid][dim], p);
Value add = builder.create<arith::AddIOp>(loc, mul, iv);
return add;
}
LoopEmitter::LoopEmitter(ValueRange tensors, StringAttr loopTag, bool hasOutput,
bool isSparseOut, ArrayRef<unsigned> topSort) {
initialize(tensors, loopTag, hasOutput, isSparseOut, topSort);
}
void LoopEmitter::initialize(ValueRange tensors, StringAttr loopTag,
bool hasOutput, bool isSparseOut,
ArrayRef<unsigned> topSort) {
// First initializes fields.
this->loopTag = loopTag;
this->hasOutput = hasOutput;
this->isSparseOut = isSparseOut;
this->tensors.assign(tensors.begin(), tensors.end());
this->dimTypes.assign(tensors.size(), std::vector<DimLevelType>());
this->pidxs.assign(tensors.size(), std::vector<Value>());
this->coord.assign(tensors.size(), std::vector<Value>());
this->highs.assign(tensors.size(), std::vector<Value>());
this->ptrBuffer.assign(tensors.size(), std::vector<Value>());
this->idxBuffer.assign(tensors.size(), std::vector<Value>());
this->valBuffer.assign(tensors.size(), nullptr);
this->loopStack.reserve(topSort.size());
this->sparsiferLoopLvlMap.assign(topSort.size(), 0);
for (size_t tid = 0, e = tensors.size(); tid < e; tid++) {
auto t = tensors[tid];
// a scalar or 0-dimension tensors
if (isZeroRankedTensorOrScalar(t.getType()))
continue;
auto rtp = getRankedTensorType(t);
auto rank = static_cast<size_t>(rtp.getRank());
auto enc = getSparseTensorEncoding(rtp);
// We always treat sparse output tensor as dense so that we always iterate
// it based on dim size.
if (enc && !(isOutputTensor(tid) && isSparseOut))
for (auto dimTp : enc.getDimLevelType())
dimTypes[tid].push_back(dimTp);
else
dimTypes[tid].assign(rank, DimLevelType::Dense);
// Initialize using empty value.
pidxs[tid].assign(rank, Value());
coord[tid].assign(rank, Value());
highs[tid].assign(rank, Value());
ptrBuffer[tid].assign(rank, Value());
idxBuffer[tid].assign(rank, Value());
}
// FIXME: This map should be maintained outside loop emitter.
for (unsigned i = 0, e = topSort.size(); i < e; i++) {
// This is an inverse map of the topologically sorted loop index from
// sparsifier. This is needed to map the AffineDimExpr back to the loopStack
// index used in loop emitter.
sparsiferLoopLvlMap[topSort[i]] = i;
}
}
void LoopEmitter::initializeLoopEmit(OpBuilder &builder, Location loc,
LoopEmitter::OutputUpdater updater) {
// For every tensor, find lower and upper bound on dimensions, set the
// same bounds on loop indices, and obtain dense or sparse buffer(s).
for (size_t t = 0, e = tensors.size(); t < e; t++) {
auto tensor = tensors[t];
auto rtp = tensor.getType().dyn_cast<RankedTensorType>();
if (!rtp)
// Skips only scalar, zero ranked tensor still need to be bufferized and
// (probably) filled with zeros by users.
continue;
auto rank = rtp.getRank();
auto shape = rtp.getShape();
auto enc = getSparseTensorEncoding(rtp);
uint64_t cooStart = enc ? getCOOStart(enc) : rank;
// Scan all dimensions of current tensor.
for (int64_t d = 0; d < rank; d++) {
// This should be called only once at beginning.
assert(!ptrBuffer[t][d] && !idxBuffer[t][d] && !highs[t][d]);
// Handle sparse storage schemes.
if (isCompressedDLT(dimTypes[t][d])) {
// Generate sparse primitives to obtains pointer and indices.
ptrBuffer[t][d] = genToPointers(builder, loc, tensor, d);
idxBuffer[t][d] = genToIndices(builder, loc, tensor, d, cooStart);
} else if (isSingletonDLT(dimTypes[t][d])) {
// Singleton dimension, fetch indices.
idxBuffer[t][d] = genToIndices(builder, loc, tensor, d, cooStart);
} else {
// Dense dimension, nothing to fetch.
assert(isDenseDLT(dimTypes[t][d]));
}
// Find upper bound in current dimension.
unsigned p = toOrigDim(enc, d);
Value up = mlir::linalg::createOrFoldDimOp(builder, loc, tensor, p);
highs[t][d] = up;
}
// Perform the required bufferization. Dense inputs materialize
// from the input tensors. Sparse inputs use sparse primitives to obtain the
// values.
// Delegates extra output initialization to clients.
bool isOutput = isOutputTensor(t);
Type elementType = rtp.getElementType();
if (!enc) {
// Non-annotated dense tensors.
auto denseTp = MemRefType::get(shape, elementType);
Value denseVal =
builder.create<bufferization::ToMemrefOp>(loc, denseTp, tensor);
// Dense outputs need special handling.
if (isOutput && updater)
denseVal = updater(builder, loc, denseVal, tensor);
valBuffer[t] = denseVal;
} else {
// Annotated sparse tensors.
// We also need the value buffer for annotated all dense `sparse` tensor.
valBuffer[t] = genToValues(builder, loc, tensor);
}
// NOTE: we can also prepare for 0 dim here in advance, this will hosit
// some loop preparation from tensor iteration, but will also (undesirably)
// hosit the code ouside if conditions.
}
}
void LoopEmitter::enterNewLoopSeq(OpBuilder &builder, Location loc,
ArrayRef<size_t> tids,
ArrayRef<size_t> dims) {
assert(loopSeqStack.size() == loopStack.size());
// Universal Index starts from 0.
loopSeqStack.emplace_back(constantIndex(builder, loc, 0));
// Prepares for all the tensors used in the current loop sequence.
for (auto [tid, dim] : llvm::zip(tids, dims))
prepareLoopOverTensorAtDim(builder, loc, tid, dim);
}
Value LoopEmitter::genAffine(OpBuilder &builder, AffineExpr a, Location loc) {
switch (a.getKind()) {
case AffineExprKind::DimId: {
unsigned idx = a.cast<AffineDimExpr>().getPosition();
return loopStack[sparsiferLoopLvlMap[idx]].iv;
}
case AffineExprKind::Add: {
auto binOp = a.cast<AffineBinaryOpExpr>();
return builder.create<arith::AddIOp>(
loc, genAffine(builder, binOp.getLHS(), loc),
genAffine(builder, binOp.getRHS(), loc));
}
case AffineExprKind::Mul: {
auto binOp = a.cast<AffineBinaryOpExpr>();
return builder.create<arith::MulIOp>(
loc, genAffine(builder, binOp.getLHS(), loc),
genAffine(builder, binOp.getRHS(), loc));
}
case AffineExprKind::Constant: {
int64_t c = a.cast<AffineConstantExpr>().getValue();
return constantIndex(builder, loc, c);
}
default:
llvm_unreachable("unexpected affine subscript");
}
}
Operation *LoopEmitter::enterLoopOverTensorAtDim(
OpBuilder &builder, Location loc, ArrayRef<size_t> tids,
ArrayRef<size_t> dims, MutableArrayRef<Value> reduc, bool isParallel) {
// TODO: support multiple return on parallel for?
assert(!isParallel || reduc.size() <= 1);
bool isSparseInput = false;
size_t tid = tids.front(), dim = dims.front();
for (auto [t, d] : llvm::zip(tids, dims)) {
assert(dimTypes[t].size() > d); // Must be a valid tid, dim pair
assert(!coord[t][d]); // We cannot re-enter the same level
auto dimType = dimTypes[t][d];
// Must be a recognizable DLT.
assert(isDenseDLT(dimType) || isCompressedDLT(dimType) ||
isSingletonDLT(dimType));
bool isSparse = isCompressedDLT(dimType) || isSingletonDLT(dimType);
// We can at most have one sparse input, otherwise, a while loop is required
// to co-iterate multiple sparse tensors.
assert(!isSparseInput || !isSparse);
if (isSparse) {
tid = t;
dim = d;
}
isSparseInput = isSparseInput || isSparse;
}
Value step = constantIndex(builder, loc, 1);
Value lo = isSparseInput ? pidxs[tid][dim] // current offset
: loopSeqStack.back(); // univeral tid
Value hi = highs[tid][dim];
Operation *loop = nullptr;
Value iv;
if (isParallel) {
scf::ParallelOp parOp =
builder.create<scf::ParallelOp>(loc, lo, hi, step, reduc);
builder.setInsertionPointToStart(parOp.getBody());
assert(parOp.getNumReductions() == reduc.size());
iv = parOp.getInductionVars()[0];
// In-place update on the reduction variable vector.
// Note that the init vals is not the actual reduction variables but instead
// used as a `special handle` to (temporarily) represent them. The
// expression on init vals will be moved into scf.reduce and replaced with
// the block arguments when exiting the loop (see exitForLoop). This is
// needed as we can not build the actual reduction block and get the actual
// reduction varaible before users fill parallel loop body.
for (int i = 0, e = reduc.size(); i < e; i++)
reduc[i] = parOp.getInitVals()[i];
loop = parOp;
} else {
scf::ForOp forOp = builder.create<scf::ForOp>(loc, lo, hi, step, reduc);
builder.setInsertionPointToStart(forOp.getBody());
iv = forOp.getInductionVar();
// In-place update on the reduction variable vector.
assert(forOp.getNumRegionIterArgs() == reduc.size());
for (int i = 0, e = reduc.size(); i < e; i++)
reduc[i] = forOp.getRegionIterArg(i);
loop = forOp;
}
assert(loop && iv);
if (isSparseInput) {
pidxs[tid][dim] = iv;
// Generating a load on the indices array yields the coordinate.
Value ptr = idxBuffer[tid][dim];
coord[tid][dim] = genIndexLoad(builder, loc, ptr, iv);
} else {
// Dense tensor, the coordinates is the inducation variable.
coord[tid][dim] = iv;
}
// NOTE: we can also prepare for next dim here in advance
// Push the loop into stack
loopStack.emplace_back(ArrayRef<size_t>(tid), ArrayRef<size_t>(dim), loop,
coord[tid][dim], loopTag);
// Emit extra locals.
emitExtraLocalsForTensorsAtDenseDims(builder, loc, tids, dims);
return loop;
}
Operation *LoopEmitter::enterFilterLoopOverTensorAtDim(
OpBuilder &builder, Location loc, size_t tid, size_t dim, AffineExpr affine,
MutableArrayRef<Value> reduc) {
assert(!affine.isa<AffineDimExpr>() && !isDenseDLT(dimTypes[tid][dim]));
assert(dimTypes[tid].size() > dim);
// We can not re-enter the same level.
assert(!coord[tid][dim]);
Value step = constantIndex(builder, loc, 1);
Value lo = pidxs[tid][dim];
Value hi = highs[tid][dim];
// TODO: We should instead use a whileOp for filter loop to allow early
// break when exceeding (for ordered dimensions).
// TODO: There are many other potiential opportunities that we might apply in
// the future. E.g., we could use binary search to located the pointer index.
scf::ForOp forOp = builder.create<scf::ForOp>(loc, lo, hi, step, reduc);
// In-place update on the reduction variable vector.
assert(forOp.getNumRegionIterArgs() == reduc.size());
for (int i = 0, e = reduc.size(); i < e; i++)
reduc[i] = forOp.getRegionIterArg(i);
builder.setInsertionPointToStart(forOp.getBody());
Value iv = forOp.getInductionVar();
pidxs[tid][dim] = iv;
// Generating a load on the indices array yields the coordinate.
Value ptr = idxBuffer[tid][dim];
coord[tid][dim] = genIndexLoad(builder, loc, ptr, iv);
// Generate an if condition to filter out indices that is not equal to the
// result of the affine expression.
Value expected = genAffine(builder, affine, loc);
auto pred = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
coord[tid][dim], expected);
SmallVector<Type> types;
for (Value red : reduc) {
types.push_back(red.getType());
}
bool hasReduc = !types.empty();
scf::IfOp ifOp =
builder.create<scf::IfOp>(loc, types, pred, /*else*/ hasReduc);
if (hasReduc) {
// scf.for (a) -> v
// %s = scf.if (a) -> v
// user-generated code.
// else
// yield a
// yield %s
builder.create<scf::YieldOp>(loc, ifOp.getResults());
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
// On mismatch.
builder.create<scf::YieldOp>(loc, reduc);
}
// Set the insert point to matched branch.
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
// NOTE: we can also prepare for next dim here in advance
// Push the loop into stack
loopStack.emplace_back(ArrayRef<size_t>(tid), ArrayRef<size_t>(dim), forOp,
coord[tid][dim], nullptr);
return forOp;
}
void LoopEmitter::genDenseAffineAddressAtCurLevel(OpBuilder &builder,
Location loc, size_t tid,
size_t dim,
AffineExpr affine) {
Value affineV = genAffine(builder, affine, loc);
pidxs[tid][dim] = genAddress(builder, loc, tid, dim, affineV);
}
Operation *LoopEmitter::enterCoIterationOverTensorsAtDims(
OpBuilder &builder, Location loc, ArrayRef<size_t> tids,
ArrayRef<size_t> dims, bool needsUniv, MutableArrayRef<Value> reduc) {
assert(tids.size() == dims.size());
SmallVector<Type> types;
SmallVector<Value> operands;
// Construct the while-loop with a parameter for each index.
Type indexType = builder.getIndexType();
for (auto [tid, dim] : llvm::zip(tids, dims)) {
if (isCompressedDLT(dimTypes[tid][dim]) ||
isSingletonDLT(dimTypes[tid][dim])) {
assert(pidxs[tid][dim]);
types.push_back(indexType);
operands.push_back(pidxs[tid][dim]);
}
}
// The position where user-supplied reduction variable starts.
for (Value rec : reduc) {
types.push_back(rec.getType());
operands.push_back(rec);
}
if (needsUniv) {
types.push_back(indexType);
// Update universal index.
operands.push_back(loopSeqStack.back());
}
assert(types.size() == operands.size());
scf::WhileOp whileOp = builder.create<scf::WhileOp>(loc, types, operands);
SmallVector<Location> locs(types.size(), loc);
Block *before = builder.createBlock(&whileOp.getBefore(), {}, types, locs);
Block *after = builder.createBlock(&whileOp.getAfter(), {}, types, locs);
// Build the "before" region, which effectively consists
// of a conjunction of "i < upper" tests on all induction.
builder.setInsertionPointToStart(&whileOp.getBefore().front());
Value cond;
unsigned o = 0;
for (auto [tid, dim] : llvm::zip(tids, dims)) {
if (isCompressedDLT(dimTypes[tid][dim]) ||
isSingletonDLT(dimTypes[tid][dim])) {
Value op1 = before->getArgument(o);
Value op2 = highs[tid][dim];
Value opc = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
op1, op2);
cond = cond ? builder.create<arith::AndIOp>(loc, cond, opc) : opc;
// Update
pidxs[tid][dim] = after->getArgument(o++);
}
}
builder.create<scf::ConditionOp>(loc, cond, before->getArguments());
// Generates while body.
builder.setInsertionPointToStart(&whileOp.getAfter().front());
Value min;
for (auto [tid, dim] : llvm::zip(tids, dims)) {
// Prepares for next level.
if (isCompressedDLT(dimTypes[tid][dim]) ||
isSingletonDLT(dimTypes[tid][dim])) {
Value ptr = idxBuffer[tid][dim];
Value s = pidxs[tid][dim];
Value load = genIndexLoad(builder, loc, ptr, s);
coord[tid][dim] = load;
if (!needsUniv) {
if (min) {
Value cmp = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::ult, load, min);
min = builder.create<arith::SelectOp>(loc, cmp, load, min);
} else {
min = load;
}
}
}
}
if (needsUniv) {
assert(!min);
// Otherwise, universal index is the minimal pidx.
min = after->getArguments().back();
}
// Sets up the loop stack.
loopStack.emplace_back(tids, dims, whileOp, min, loopTag);
assert(loopStack.size() == loopSeqStack.size());
// Emits extra locals
emitExtraLocalsForTensorsAtDenseDims(builder, loc, tids, dims);
// Updates reduction variables
assert(after->getNumArguments() == o + reduc.size() + (needsUniv ? 1 : 0));
// In-place update on reduction variable.
for (unsigned i = 0, e = reduc.size(); i < e; i++)
reduc[i] = after->getArgument(o + i);
return whileOp;
}
void LoopEmitter::prepareLoopOverTensorAtDim(OpBuilder &builder, Location loc,
size_t tid, size_t dim) {
assert(dimTypes[tid].size() > dim);
auto dimType = dimTypes[tid][dim];
if (isDenseDLT(dimType))
return;
// Either the first dimension, or the previous dimension has been set.
assert(dim == 0 || pidxs[tid][dim - 1]);
Value c0 = constantIndex(builder, loc, 0);
Value c1 = constantIndex(builder, loc, 1);
if (isCompressedDLT(dimType)) {
Value ptr = ptrBuffer[tid][dim];
Value pLo = dim == 0 ? c0 : pidxs[tid][dim - 1];
pidxs[tid][dim] = genIndexLoad(builder, loc, ptr, pLo);
Value pHi = builder.create<arith::AddIOp>(loc, pLo, c1);
highs[tid][dim] = genIndexLoad(builder, loc, ptr, pHi);
return;
}
if (isSingletonDLT(dimType)) {
Value pLo = dim == 0 ? c0 : pidxs[tid][dim - 1];
Value pHi = builder.create<arith::AddIOp>(loc, pLo, c1);
pidxs[tid][dim] = pLo;
highs[tid][dim] = pHi;
return;
}
llvm_unreachable("Unrecognizable dimesion type!");
}
void LoopEmitter::emitExtraLocalsForTensorsAtDenseDims(OpBuilder &builder,
Location loc,
ArrayRef<size_t> tids,
ArrayRef<size_t> dims) {
// Initialize dense positions. Note that we generate dense indices of the
// output tensor unconditionally, since they may not appear in the lattice,
// but may be needed for linearized codegen.
for (auto [tid, dim] : llvm::zip(tids, dims)) {
if (isDenseDLT(dimTypes[tid][dim])) {
auto enc = getSparseTensorEncoding(tensors[tid].getType());
if (enc && !isSparseOutput(tid)) {
bool validPidx = dim == 0 || pidxs[tid][dim - 1];
if (!validPidx) {
// We might not find the pidx for the sparse output tensor as it is
// unconditionally required by the sparsification.
assert(isOutputTensor(tid));
continue;
}
pidxs[tid][dim] =
genAddress(builder, loc, tid, dim, loopStack.back().iv);
// NOTE: we can also prepare for next dim here in advance
}
}
}
}
void LoopEmitter::exitForLoop(RewriterBase &rewriter, Location loc,
MutableArrayRef<Value> reduc) {
LoopLevelInfo &loopInfo = loopStack.back();
auto &dims = loopStack.back().dims;
auto &tids = loopStack.back().tids;
auto forOp = llvm::dyn_cast<scf::ForOp>(loopInfo.loop);
if (forOp) {
if (!reduc.empty()) {
assert(reduc.size() == forOp.getNumResults());
rewriter.create<scf::YieldOp>(loc, reduc);
}
// Exit the loop.
rewriter.setInsertionPointAfter(forOp);
// In-place update reduction variables.
for (unsigned i = 0, e = forOp.getResults().size(); i < e; i++)
reduc[i] = forOp.getResult(i);
} else {
auto parOp = llvm::cast<scf::ParallelOp>(loopInfo.loop);
if (!reduc.empty()) {
assert(reduc.size() == parOp.getInitVals().size() && reduc.size() == 1);
Operation *redExp = reduc.front().getDefiningOp();
// Reduction expression should have no use.
assert(redExp->getUses().empty());
// This must be a binary operation.
// NOTE: This is users' responsibilty to ensure the operation are
// commutative.
assert(redExp->getNumOperands() == 2 && redExp->getNumResults() == 1);
Value redVal = parOp.getInitVals().front();
Value curVal;
if (redExp->getOperand(0) == redVal)
curVal = redExp->getOperand(1);
else if (redExp->getOperand(1) == redVal)
curVal = redExp->getOperand(0);
// One of the operands must be the init value (which is also the
// previous reduction value).
assert(curVal);
// The reduction expression should be the only user of the reduction val
// inside the parallel for.
unsigned numUsers = 0;
for (Operation *op : redVal.getUsers()) {
if (op->getParentOp() == parOp)
numUsers++;
}
assert(numUsers == 1);
(void)numUsers; // to silence unused variable warning in release build
rewriter.setInsertionPointAfter(redExp);
auto redOp = rewriter.create<scf::ReduceOp>(loc, curVal);
// Attach to the reduction op.
Block *redBlock = &redOp.getRegion().getBlocks().front();
rewriter.setInsertionPointToEnd(redBlock);
Operation *newRed = rewriter.clone(*redExp);
// Replaces arguments of the reduction expression by using the block
// arguments from scf.reduce.
rewriter.updateRootInPlace(
newRed, [&]() { newRed->setOperands(redBlock->getArguments()); });
// Erases the out-dated reduction expression.
rewriter.eraseOp(redExp);
rewriter.setInsertionPointToEnd(redBlock);
rewriter.create<scf::ReduceReturnOp>(loc, newRed->getResult(0));
}
rewriter.setInsertionPointAfter(parOp);
// In-place update reduction variables.
for (unsigned i = 0, e = parOp.getResults().size(); i < e; i++)
reduc[i] = parOp.getResult(i);
}
// Finished iterating a tensor, clean up
// We only do the clean up on for loop as while loops do not necessarily
// finish the iteration on a sparse tensor
for (auto [tid, dim] : llvm::zip(tids, dims)) {
// Reset to null.
coord[tid][dim] = Value();
pidxs[tid][dim] = Value();
// Dense dimension, high is fixed.
if (!isDenseDLT(dimTypes[tid][dim]))
highs[tid][dim] = Value();
}
}
void LoopEmitter::exitCoIterationLoop(OpBuilder &builder, Location loc,
MutableArrayRef<Value> reduc) {
auto whileOp = llvm::cast<scf::WhileOp>(loopStack.back().loop);
auto &dims = loopStack.back().dims;
auto &tids = loopStack.back().tids;
Value iv = loopStack.back().iv;
// Generation while loop induction at the end.
builder.setInsertionPointToEnd(&whileOp.getAfter().front());
// Finalize the induction. Note that the induction could be performed
// in the individual if-branches to avoid re-evaluating the conditions.
// However, that would result in a rather elaborate forest of yield
// instructions during code generation. Moreover, performing the induction
// after the if-statements more closely resembles code generated by TACO.
unsigned o = 0;
SmallVector<Value> operands;
Value one = constantIndex(builder, loc, 1);
for (auto [tid, dim] : llvm::zip(tids, dims)) {
if (isCompressedDLT(dimTypes[tid][dim]) ||
isSingletonDLT(dimTypes[tid][dim])) {
Value op1 = coord[tid][dim];
Value op3 = pidxs[tid][dim];
Value cmp =
builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, op1, iv);
Value add = builder.create<arith::AddIOp>(loc, op3, one);
operands.push_back(builder.create<arith::SelectOp>(loc, cmp, add, op3));
// Following loops continue iteration from the break point of the
// current while loop.
pidxs[tid][dim] = whileOp->getResult(o++);
// The coordinates are invalid now.
coord[tid][dim] = nullptr;
// highs remains unchanged.
}
}
// Reduction value from users.
for (auto &i : reduc) {
operands.push_back(i);
// In place update reduction variable.
i = whileOp->getResult(o++);
}
// An (optional) universal index.
if (operands.size() < whileOp.getNumResults()) {
assert(operands.size() + 1 == whileOp.getNumResults());
// The last one is the universial index.
operands.push_back(builder.create<arith::AddIOp>(loc, iv, one));
// update the loop starting point of current loop sequence
loopSeqStack.back() = whileOp->getResult(o++);
}
assert(o == operands.size());
builder.create<scf::YieldOp>(loc, operands);
builder.setInsertionPointAfter(whileOp);
}
void LoopEmitter::exitCurrentLoop(RewriterBase &rewriter, Location loc,
MutableArrayRef<Value> reduc) {
// Clean up the values, it would help use to discover potential bug at a
// earlier stage (instead of silently using a wrong value).
LoopLevelInfo &loopInfo = loopStack.back();
assert(loopInfo.tids.size() == loopInfo.dims.size());
SmallVector<Value> red;
if (llvm::isa<scf::WhileOp>(loopInfo.loop)) {
exitCoIterationLoop(rewriter, loc, reduc);
} else {
exitForLoop(rewriter, loc, reduc);
}
assert(loopStack.size() == loopSeqStack.size());
loopStack.pop_back();
}
|