File: LoopEmitter.cpp

package info (click to toggle)
llvm-toolchain-16 1%3A16.0.6-15~deb11u2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,634,820 kB
  • sloc: cpp: 6,179,261; ansic: 1,216,205; asm: 741,319; python: 196,614; objc: 75,325; f90: 49,640; lisp: 32,396; pascal: 12,286; sh: 9,394; perl: 7,442; ml: 5,494; awk: 3,523; makefile: 2,723; javascript: 1,206; xml: 886; fortran: 581; cs: 573
file content (680 lines) | stat: -rw-r--r-- 27,172 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
//===- LoopEmitter.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "LoopEmitter.h"
#include "CodegenUtils.h"

#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"

using namespace mlir;
using namespace mlir::sparse_tensor;

//===----------------------------------------------------------------------===//
// File local helper functions.
//===----------------------------------------------------------------------===//

/// Generates a pointer/index load from the sparse storage scheme. Narrower
/// data types need to be zero extended before casting the value into the
/// index type used for looping and indexing.
static Value genIndexLoad(OpBuilder &builder, Location loc, Value ptr,
                          Value s) {
  // For the scalar case, we simply zero extend narrower indices into 64-bit
  // values before casting to index without a performance penalty. Here too,
  // however, indices that already are 64-bit, in theory, cannot express the
  // full range as explained above.
  Value load = builder.create<memref::LoadOp>(loc, ptr, s);
  if (!load.getType().isa<IndexType>()) {
    if (load.getType().getIntOrFloatBitWidth() < 64)
      load = builder.create<arith::ExtUIOp>(loc, builder.getI64Type(), load);
    load =
        builder.create<arith::IndexCastOp>(loc, builder.getIndexType(), load);
  }
  return load;
}

//===----------------------------------------------------------------------===//
// Sparse tensor loop emitter class implementations
//===----------------------------------------------------------------------===//

Value LoopEmitter::genAddress(OpBuilder &builder, Location loc, size_t tid,
                              size_t dim, Value iv) {
  Value p = dim == 0 ? constantIndex(builder, loc, 0) : pidxs[tid][dim - 1];
  Value mul = builder.create<arith::MulIOp>(loc, highs[tid][dim], p);
  Value add = builder.create<arith::AddIOp>(loc, mul, iv);
  return add;
}

LoopEmitter::LoopEmitter(ValueRange tensors, StringAttr loopTag, bool hasOutput,
                         bool isSparseOut, ArrayRef<unsigned> topSort) {
  initialize(tensors, loopTag, hasOutput, isSparseOut, topSort);
}

void LoopEmitter::initialize(ValueRange tensors, StringAttr loopTag,
                             bool hasOutput, bool isSparseOut,
                             ArrayRef<unsigned> topSort) {
  // First initializes fields.
  this->loopTag = loopTag;
  this->hasOutput = hasOutput;
  this->isSparseOut = isSparseOut;
  this->tensors.assign(tensors.begin(), tensors.end());
  this->dimTypes.assign(tensors.size(), std::vector<DimLevelType>());
  this->pidxs.assign(tensors.size(), std::vector<Value>());
  this->coord.assign(tensors.size(), std::vector<Value>());
  this->highs.assign(tensors.size(), std::vector<Value>());
  this->ptrBuffer.assign(tensors.size(), std::vector<Value>());
  this->idxBuffer.assign(tensors.size(), std::vector<Value>());
  this->valBuffer.assign(tensors.size(), nullptr);
  this->loopStack.reserve(topSort.size());
  this->sparsiferLoopLvlMap.assign(topSort.size(), 0);

  for (size_t tid = 0, e = tensors.size(); tid < e; tid++) {
    auto t = tensors[tid];
    // a scalar or 0-dimension tensors
    if (isZeroRankedTensorOrScalar(t.getType()))
      continue;
    auto rtp = getRankedTensorType(t);
    auto rank = static_cast<size_t>(rtp.getRank());
    auto enc = getSparseTensorEncoding(rtp);
    // We always treat sparse output tensor as dense so that we always iterate
    // it based on dim size.
    if (enc && !(isOutputTensor(tid) && isSparseOut))
      for (auto dimTp : enc.getDimLevelType())
        dimTypes[tid].push_back(dimTp);
    else
      dimTypes[tid].assign(rank, DimLevelType::Dense);

    // Initialize using empty value.
    pidxs[tid].assign(rank, Value());
    coord[tid].assign(rank, Value());
    highs[tid].assign(rank, Value());
    ptrBuffer[tid].assign(rank, Value());
    idxBuffer[tid].assign(rank, Value());
  }

  // FIXME: This map should be maintained outside loop emitter.
  for (unsigned i = 0, e = topSort.size(); i < e; i++) {
    // This is an inverse map of the topologically sorted loop index from
    // sparsifier. This is needed to map the AffineDimExpr back to the loopStack
    // index used in loop emitter.
    sparsiferLoopLvlMap[topSort[i]] = i;
  }
}

void LoopEmitter::initializeLoopEmit(OpBuilder &builder, Location loc,
                                     LoopEmitter::OutputUpdater updater) {
  // For every tensor, find lower and upper bound on dimensions, set the
  // same bounds on loop indices, and obtain dense or sparse buffer(s).
  for (size_t t = 0, e = tensors.size(); t < e; t++) {
    auto tensor = tensors[t];
    auto rtp = tensor.getType().dyn_cast<RankedTensorType>();
    if (!rtp)
      // Skips only scalar, zero ranked tensor still need to be bufferized and
      // (probably) filled with zeros by users.
      continue;
    auto rank = rtp.getRank();
    auto shape = rtp.getShape();
    auto enc = getSparseTensorEncoding(rtp);
    uint64_t cooStart = enc ? getCOOStart(enc) : rank;
    // Scan all dimensions of current tensor.
    for (int64_t d = 0; d < rank; d++) {
      // This should be called only once at beginning.
      assert(!ptrBuffer[t][d] && !idxBuffer[t][d] && !highs[t][d]);
      // Handle sparse storage schemes.
      if (isCompressedDLT(dimTypes[t][d])) {
        // Generate sparse primitives to obtains pointer and indices.
        ptrBuffer[t][d] = genToPointers(builder, loc, tensor, d);
        idxBuffer[t][d] = genToIndices(builder, loc, tensor, d, cooStart);
      } else if (isSingletonDLT(dimTypes[t][d])) {
        // Singleton dimension, fetch indices.
        idxBuffer[t][d] = genToIndices(builder, loc, tensor, d, cooStart);
      } else {
        // Dense dimension, nothing to fetch.
        assert(isDenseDLT(dimTypes[t][d]));
      }

      // Find upper bound in current dimension.
      unsigned p = toOrigDim(enc, d);
      Value up = mlir::linalg::createOrFoldDimOp(builder, loc, tensor, p);
      highs[t][d] = up;
    }

    // Perform the required bufferization. Dense inputs materialize
    // from the input tensors. Sparse inputs use sparse primitives to obtain the
    // values.
    // Delegates extra output initialization to clients.
    bool isOutput = isOutputTensor(t);
    Type elementType = rtp.getElementType();
    if (!enc) {
      // Non-annotated dense tensors.
      auto denseTp = MemRefType::get(shape, elementType);
      Value denseVal =
          builder.create<bufferization::ToMemrefOp>(loc, denseTp, tensor);
      // Dense outputs need special handling.
      if (isOutput && updater)
        denseVal = updater(builder, loc, denseVal, tensor);

      valBuffer[t] = denseVal;
    } else {
      // Annotated sparse tensors.
      // We also need the value buffer for annotated all dense `sparse` tensor.
      valBuffer[t] = genToValues(builder, loc, tensor);
    }
    // NOTE: we can also prepare for 0 dim here in advance, this will hosit
    // some loop preparation from tensor iteration, but will also (undesirably)
    // hosit the code ouside if conditions.
  }
}

void LoopEmitter::enterNewLoopSeq(OpBuilder &builder, Location loc,
                                  ArrayRef<size_t> tids,
                                  ArrayRef<size_t> dims) {
  assert(loopSeqStack.size() == loopStack.size());
  // Universal Index starts from 0.
  loopSeqStack.emplace_back(constantIndex(builder, loc, 0));
  // Prepares for all the tensors used in the current loop sequence.
  for (auto [tid, dim] : llvm::zip(tids, dims))
    prepareLoopOverTensorAtDim(builder, loc, tid, dim);
}

Value LoopEmitter::genAffine(OpBuilder &builder, AffineExpr a, Location loc) {
  switch (a.getKind()) {
  case AffineExprKind::DimId: {
    unsigned idx = a.cast<AffineDimExpr>().getPosition();
    return loopStack[sparsiferLoopLvlMap[idx]].iv;
  }
  case AffineExprKind::Add: {
    auto binOp = a.cast<AffineBinaryOpExpr>();
    return builder.create<arith::AddIOp>(
        loc, genAffine(builder, binOp.getLHS(), loc),
        genAffine(builder, binOp.getRHS(), loc));
  }
  case AffineExprKind::Mul: {
    auto binOp = a.cast<AffineBinaryOpExpr>();
    return builder.create<arith::MulIOp>(
        loc, genAffine(builder, binOp.getLHS(), loc),
        genAffine(builder, binOp.getRHS(), loc));
  }
  case AffineExprKind::Constant: {
    int64_t c = a.cast<AffineConstantExpr>().getValue();
    return constantIndex(builder, loc, c);
  }
  default:
    llvm_unreachable("unexpected affine subscript");
  }
}

Operation *LoopEmitter::enterLoopOverTensorAtDim(
    OpBuilder &builder, Location loc, ArrayRef<size_t> tids,
    ArrayRef<size_t> dims, MutableArrayRef<Value> reduc, bool isParallel) {
  // TODO: support multiple return on parallel for?
  assert(!isParallel || reduc.size() <= 1);

  bool isSparseInput = false;
  size_t tid = tids.front(), dim = dims.front();
  for (auto [t, d] : llvm::zip(tids, dims)) {
    assert(dimTypes[t].size() > d); // Must be a valid tid, dim pair
    assert(!coord[t][d]);           // We cannot re-enter the same level
    auto dimType = dimTypes[t][d];
    // Must be a recognizable DLT.
    assert(isDenseDLT(dimType) || isCompressedDLT(dimType) ||
           isSingletonDLT(dimType));
    bool isSparse = isCompressedDLT(dimType) || isSingletonDLT(dimType);
    // We can at most have one sparse input, otherwise, a while loop is required
    // to co-iterate multiple sparse tensors.
    assert(!isSparseInput || !isSparse);
    if (isSparse) {
      tid = t;
      dim = d;
    }
    isSparseInput = isSparseInput || isSparse;
  }

  Value step = constantIndex(builder, loc, 1);
  Value lo = isSparseInput ? pidxs[tid][dim]      // current offset
                           : loopSeqStack.back(); // univeral tid
  Value hi = highs[tid][dim];
  Operation *loop = nullptr;
  Value iv;
  if (isParallel) {
    scf::ParallelOp parOp =
        builder.create<scf::ParallelOp>(loc, lo, hi, step, reduc);
    builder.setInsertionPointToStart(parOp.getBody());
    assert(parOp.getNumReductions() == reduc.size());
    iv = parOp.getInductionVars()[0];

    // In-place update on the reduction variable vector.
    // Note that the init vals is not the actual reduction variables but instead
    // used as a `special handle` to (temporarily) represent them. The
    // expression on init vals will be moved into scf.reduce and replaced with
    // the block arguments when exiting the loop (see exitForLoop). This is
    // needed as we can not build the actual reduction block and get the actual
    // reduction varaible before users fill parallel loop body.
    for (int i = 0, e = reduc.size(); i < e; i++)
      reduc[i] = parOp.getInitVals()[i];
    loop = parOp;
  } else {
    scf::ForOp forOp = builder.create<scf::ForOp>(loc, lo, hi, step, reduc);
    builder.setInsertionPointToStart(forOp.getBody());
    iv = forOp.getInductionVar();

    // In-place update on the reduction variable vector.
    assert(forOp.getNumRegionIterArgs() == reduc.size());
    for (int i = 0, e = reduc.size(); i < e; i++)
      reduc[i] = forOp.getRegionIterArg(i);
    loop = forOp;
  }
  assert(loop && iv);

  if (isSparseInput) {
    pidxs[tid][dim] = iv;
    // Generating a load on the indices array yields the coordinate.
    Value ptr = idxBuffer[tid][dim];
    coord[tid][dim] = genIndexLoad(builder, loc, ptr, iv);
  } else {
    // Dense tensor, the coordinates is the inducation variable.
    coord[tid][dim] = iv;
  }
  // NOTE: we can also prepare for next dim here in advance
  // Push the loop into stack
  loopStack.emplace_back(ArrayRef<size_t>(tid), ArrayRef<size_t>(dim), loop,
                         coord[tid][dim], loopTag);
  // Emit extra locals.
  emitExtraLocalsForTensorsAtDenseDims(builder, loc, tids, dims);

  return loop;
}

Operation *LoopEmitter::enterFilterLoopOverTensorAtDim(
    OpBuilder &builder, Location loc, size_t tid, size_t dim, AffineExpr affine,
    MutableArrayRef<Value> reduc) {
  assert(!affine.isa<AffineDimExpr>() && !isDenseDLT(dimTypes[tid][dim]));
  assert(dimTypes[tid].size() > dim);
  // We can not re-enter the same level.
  assert(!coord[tid][dim]);

  Value step = constantIndex(builder, loc, 1);

  Value lo = pidxs[tid][dim];
  Value hi = highs[tid][dim];

  // TODO: We should instead use a whileOp for filter loop to allow early
  // break when exceeding (for ordered dimensions).
  // TODO: There are many other potiential opportunities that we might apply in
  // the future. E.g., we could use binary search to located the pointer index.
  scf::ForOp forOp = builder.create<scf::ForOp>(loc, lo, hi, step, reduc);

  // In-place update on the reduction variable vector.
  assert(forOp.getNumRegionIterArgs() == reduc.size());
  for (int i = 0, e = reduc.size(); i < e; i++)
    reduc[i] = forOp.getRegionIterArg(i);

  builder.setInsertionPointToStart(forOp.getBody());
  Value iv = forOp.getInductionVar();

  pidxs[tid][dim] = iv;
  // Generating a load on the indices array yields the coordinate.
  Value ptr = idxBuffer[tid][dim];
  coord[tid][dim] = genIndexLoad(builder, loc, ptr, iv);

  // Generate an if condition to filter out indices that is not equal to the
  // result of the affine expression.
  Value expected = genAffine(builder, affine, loc);
  auto pred = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
                                            coord[tid][dim], expected);
  SmallVector<Type> types;
  for (Value red : reduc) {
    types.push_back(red.getType());
  }

  bool hasReduc = !types.empty();
  scf::IfOp ifOp =
      builder.create<scf::IfOp>(loc, types, pred, /*else*/ hasReduc);
  if (hasReduc) {
    // scf.for (a) -> v
    //  %s = scf.if (a) -> v
    //    user-generated code.
    //  else
    //    yield a
    //  yield %s
    builder.create<scf::YieldOp>(loc, ifOp.getResults());
    builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
    // On mismatch.
    builder.create<scf::YieldOp>(loc, reduc);
  }
  // Set the insert point to matched branch.
  builder.setInsertionPointToStart(&ifOp.getThenRegion().front());

  // NOTE: we can also prepare for next dim here in advance
  // Push the loop into stack
  loopStack.emplace_back(ArrayRef<size_t>(tid), ArrayRef<size_t>(dim), forOp,
                         coord[tid][dim], nullptr);
  return forOp;
}

void LoopEmitter::genDenseAffineAddressAtCurLevel(OpBuilder &builder,
                                                  Location loc, size_t tid,
                                                  size_t dim,
                                                  AffineExpr affine) {
  Value affineV = genAffine(builder, affine, loc);
  pidxs[tid][dim] = genAddress(builder, loc, tid, dim, affineV);
}

Operation *LoopEmitter::enterCoIterationOverTensorsAtDims(
    OpBuilder &builder, Location loc, ArrayRef<size_t> tids,
    ArrayRef<size_t> dims, bool needsUniv, MutableArrayRef<Value> reduc) {
  assert(tids.size() == dims.size());
  SmallVector<Type> types;
  SmallVector<Value> operands;
  // Construct the while-loop with a parameter for each index.
  Type indexType = builder.getIndexType();
  for (auto [tid, dim] : llvm::zip(tids, dims)) {
    if (isCompressedDLT(dimTypes[tid][dim]) ||
        isSingletonDLT(dimTypes[tid][dim])) {
      assert(pidxs[tid][dim]);
      types.push_back(indexType);
      operands.push_back(pidxs[tid][dim]);
    }
  }
  // The position where user-supplied reduction variable starts.
  for (Value rec : reduc) {
    types.push_back(rec.getType());
    operands.push_back(rec);
  }
  if (needsUniv) {
    types.push_back(indexType);
    // Update universal index.
    operands.push_back(loopSeqStack.back());
  }
  assert(types.size() == operands.size());
  scf::WhileOp whileOp = builder.create<scf::WhileOp>(loc, types, operands);

  SmallVector<Location> locs(types.size(), loc);
  Block *before = builder.createBlock(&whileOp.getBefore(), {}, types, locs);
  Block *after = builder.createBlock(&whileOp.getAfter(), {}, types, locs);

  // Build the "before" region, which effectively consists
  // of a conjunction of "i < upper" tests on all induction.
  builder.setInsertionPointToStart(&whileOp.getBefore().front());
  Value cond;
  unsigned o = 0;
  for (auto [tid, dim] : llvm::zip(tids, dims)) {
    if (isCompressedDLT(dimTypes[tid][dim]) ||
        isSingletonDLT(dimTypes[tid][dim])) {
      Value op1 = before->getArgument(o);
      Value op2 = highs[tid][dim];
      Value opc = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
                                                op1, op2);
      cond = cond ? builder.create<arith::AndIOp>(loc, cond, opc) : opc;
      // Update
      pidxs[tid][dim] = after->getArgument(o++);
    }
  }
  builder.create<scf::ConditionOp>(loc, cond, before->getArguments());

  // Generates while body.
  builder.setInsertionPointToStart(&whileOp.getAfter().front());
  Value min;
  for (auto [tid, dim] : llvm::zip(tids, dims)) {
    // Prepares for next level.
    if (isCompressedDLT(dimTypes[tid][dim]) ||
        isSingletonDLT(dimTypes[tid][dim])) {
      Value ptr = idxBuffer[tid][dim];
      Value s = pidxs[tid][dim];
      Value load = genIndexLoad(builder, loc, ptr, s);
      coord[tid][dim] = load;
      if (!needsUniv) {
        if (min) {
          Value cmp = builder.create<arith::CmpIOp>(
              loc, arith::CmpIPredicate::ult, load, min);
          min = builder.create<arith::SelectOp>(loc, cmp, load, min);
        } else {
          min = load;
        }
      }
    }
  }

  if (needsUniv) {
    assert(!min);
    // Otherwise, universal index is the minimal pidx.
    min = after->getArguments().back();
  }

  // Sets up the loop stack.
  loopStack.emplace_back(tids, dims, whileOp, min, loopTag);
  assert(loopStack.size() == loopSeqStack.size());

  // Emits extra locals
  emitExtraLocalsForTensorsAtDenseDims(builder, loc, tids, dims);

  // Updates reduction variables
  assert(after->getNumArguments() == o + reduc.size() + (needsUniv ? 1 : 0));
  // In-place update on reduction variable.
  for (unsigned i = 0, e = reduc.size(); i < e; i++)
    reduc[i] = after->getArgument(o + i);

  return whileOp;
}

void LoopEmitter::prepareLoopOverTensorAtDim(OpBuilder &builder, Location loc,
                                             size_t tid, size_t dim) {
  assert(dimTypes[tid].size() > dim);
  auto dimType = dimTypes[tid][dim];

  if (isDenseDLT(dimType))
    return;

  // Either the first dimension, or the previous dimension has been set.
  assert(dim == 0 || pidxs[tid][dim - 1]);
  Value c0 = constantIndex(builder, loc, 0);
  Value c1 = constantIndex(builder, loc, 1);
  if (isCompressedDLT(dimType)) {
    Value ptr = ptrBuffer[tid][dim];

    Value pLo = dim == 0 ? c0 : pidxs[tid][dim - 1];
    pidxs[tid][dim] = genIndexLoad(builder, loc, ptr, pLo);

    Value pHi = builder.create<arith::AddIOp>(loc, pLo, c1);
    highs[tid][dim] = genIndexLoad(builder, loc, ptr, pHi);
    return;
  }
  if (isSingletonDLT(dimType)) {
    Value pLo = dim == 0 ? c0 : pidxs[tid][dim - 1];
    Value pHi = builder.create<arith::AddIOp>(loc, pLo, c1);

    pidxs[tid][dim] = pLo;
    highs[tid][dim] = pHi;
    return;
  }

  llvm_unreachable("Unrecognizable dimesion type!");
}

void LoopEmitter::emitExtraLocalsForTensorsAtDenseDims(OpBuilder &builder,
                                                       Location loc,
                                                       ArrayRef<size_t> tids,
                                                       ArrayRef<size_t> dims) {
  // Initialize dense positions. Note that we generate dense indices of the
  // output tensor unconditionally, since they may not appear in the lattice,
  // but may be needed for linearized codegen.
  for (auto [tid, dim] : llvm::zip(tids, dims)) {
    if (isDenseDLT(dimTypes[tid][dim])) {
      auto enc = getSparseTensorEncoding(tensors[tid].getType());
      if (enc && !isSparseOutput(tid)) {
        bool validPidx = dim == 0 || pidxs[tid][dim - 1];
        if (!validPidx) {
          // We might not find the pidx for the sparse output tensor as it is
          // unconditionally required by the sparsification.
          assert(isOutputTensor(tid));
          continue;
        }
        pidxs[tid][dim] =
            genAddress(builder, loc, tid, dim, loopStack.back().iv);
        // NOTE: we can also prepare for next dim here in advance
      }
    }
  }
}

void LoopEmitter::exitForLoop(RewriterBase &rewriter, Location loc,
                              MutableArrayRef<Value> reduc) {
  LoopLevelInfo &loopInfo = loopStack.back();
  auto &dims = loopStack.back().dims;
  auto &tids = loopStack.back().tids;
  auto forOp = llvm::dyn_cast<scf::ForOp>(loopInfo.loop);
  if (forOp) {
    if (!reduc.empty()) {
      assert(reduc.size() == forOp.getNumResults());
      rewriter.create<scf::YieldOp>(loc, reduc);
    }
    // Exit the loop.
    rewriter.setInsertionPointAfter(forOp);
    // In-place update reduction variables.
    for (unsigned i = 0, e = forOp.getResults().size(); i < e; i++)
      reduc[i] = forOp.getResult(i);
  } else {
    auto parOp = llvm::cast<scf::ParallelOp>(loopInfo.loop);
    if (!reduc.empty()) {
      assert(reduc.size() == parOp.getInitVals().size() && reduc.size() == 1);
      Operation *redExp = reduc.front().getDefiningOp();
      // Reduction expression should have no use.
      assert(redExp->getUses().empty());
      // This must be a binary operation.
      // NOTE: This is users' responsibilty to ensure the operation are
      // commutative.
      assert(redExp->getNumOperands() == 2 && redExp->getNumResults() == 1);

      Value redVal = parOp.getInitVals().front();
      Value curVal;
      if (redExp->getOperand(0) == redVal)
        curVal = redExp->getOperand(1);
      else if (redExp->getOperand(1) == redVal)
        curVal = redExp->getOperand(0);
      // One of the operands must be the init value (which is also the
      // previous reduction value).
      assert(curVal);
      // The reduction expression should be the only user of the reduction val
      // inside the parallel for.
      unsigned numUsers = 0;
      for (Operation *op : redVal.getUsers()) {
        if (op->getParentOp() == parOp)
          numUsers++;
      }
      assert(numUsers == 1);
      (void)numUsers; // to silence unused variable warning in release build

      rewriter.setInsertionPointAfter(redExp);
      auto redOp = rewriter.create<scf::ReduceOp>(loc, curVal);
      // Attach to the reduction op.
      Block *redBlock = &redOp.getRegion().getBlocks().front();
      rewriter.setInsertionPointToEnd(redBlock);
      Operation *newRed = rewriter.clone(*redExp);
      // Replaces arguments of the reduction expression by using the block
      // arguments from scf.reduce.
      rewriter.updateRootInPlace(
          newRed, [&]() { newRed->setOperands(redBlock->getArguments()); });
      // Erases the out-dated reduction expression.
      rewriter.eraseOp(redExp);
      rewriter.setInsertionPointToEnd(redBlock);
      rewriter.create<scf::ReduceReturnOp>(loc, newRed->getResult(0));
    }
    rewriter.setInsertionPointAfter(parOp);
    // In-place update reduction variables.
    for (unsigned i = 0, e = parOp.getResults().size(); i < e; i++)
      reduc[i] = parOp.getResult(i);
  }

  // Finished iterating a tensor, clean up
  // We only do the clean up on for loop as while loops do not necessarily
  // finish the iteration on a sparse tensor
  for (auto [tid, dim] : llvm::zip(tids, dims)) {
    // Reset to null.
    coord[tid][dim] = Value();
    pidxs[tid][dim] = Value();
    // Dense dimension, high is fixed.
    if (!isDenseDLT(dimTypes[tid][dim]))
      highs[tid][dim] = Value();
  }
}

void LoopEmitter::exitCoIterationLoop(OpBuilder &builder, Location loc,
                                      MutableArrayRef<Value> reduc) {
  auto whileOp = llvm::cast<scf::WhileOp>(loopStack.back().loop);
  auto &dims = loopStack.back().dims;
  auto &tids = loopStack.back().tids;
  Value iv = loopStack.back().iv;
  // Generation while loop induction at the end.
  builder.setInsertionPointToEnd(&whileOp.getAfter().front());
  // Finalize the induction. Note that the induction could be performed
  // in the individual if-branches to avoid re-evaluating the conditions.
  // However, that would result in a rather elaborate forest of yield
  // instructions during code generation. Moreover, performing the induction
  // after the if-statements more closely resembles code generated by TACO.
  unsigned o = 0;
  SmallVector<Value> operands;
  Value one = constantIndex(builder, loc, 1);
  for (auto [tid, dim] : llvm::zip(tids, dims)) {
    if (isCompressedDLT(dimTypes[tid][dim]) ||
        isSingletonDLT(dimTypes[tid][dim])) {
      Value op1 = coord[tid][dim];
      Value op3 = pidxs[tid][dim];
      Value cmp =
          builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, op1, iv);
      Value add = builder.create<arith::AddIOp>(loc, op3, one);
      operands.push_back(builder.create<arith::SelectOp>(loc, cmp, add, op3));
      // Following loops continue iteration from the break point of the
      // current while loop.
      pidxs[tid][dim] = whileOp->getResult(o++);
      // The coordinates are invalid now.
      coord[tid][dim] = nullptr;
      // highs remains unchanged.
    }
  }

  // Reduction value from users.
  for (auto &i : reduc) {
    operands.push_back(i);
    // In place update reduction variable.
    i = whileOp->getResult(o++);
  }

  // An (optional) universal index.
  if (operands.size() < whileOp.getNumResults()) {
    assert(operands.size() + 1 == whileOp.getNumResults());
    // The last one is the universial index.
    operands.push_back(builder.create<arith::AddIOp>(loc, iv, one));
    // update the loop starting point of current loop sequence
    loopSeqStack.back() = whileOp->getResult(o++);
  }

  assert(o == operands.size());
  builder.create<scf::YieldOp>(loc, operands);
  builder.setInsertionPointAfter(whileOp);
}

void LoopEmitter::exitCurrentLoop(RewriterBase &rewriter, Location loc,
                                  MutableArrayRef<Value> reduc) {
  // Clean up the values, it would help use to discover potential bug at a
  // earlier stage (instead of silently using a wrong value).
  LoopLevelInfo &loopInfo = loopStack.back();
  assert(loopInfo.tids.size() == loopInfo.dims.size());
  SmallVector<Value> red;
  if (llvm::isa<scf::WhileOp>(loopInfo.loop)) {
    exitCoIterationLoop(rewriter, loc, reduc);
  } else {
    exitForLoop(rewriter, loc, reduc);
  }

  assert(loopStack.size() == loopSeqStack.size());
  loopStack.pop_back();
}