File: SparseTensorCodegen.cpp

package info (click to toggle)
llvm-toolchain-16 1%3A16.0.6-15~deb11u2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,634,820 kB
  • sloc: cpp: 6,179,261; ansic: 1,216,205; asm: 741,319; python: 196,614; objc: 75,325; f90: 49,640; lisp: 32,396; pascal: 12,286; sh: 9,394; perl: 7,442; ml: 5,494; awk: 3,523; makefile: 2,723; javascript: 1,206; xml: 886; fortran: 581; cs: 573
file content (1025 lines) | stat: -rw-r--r-- 43,453 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
//===- SparseTensorCodegen.cpp - Sparse tensor primitives conversion ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// A pass that converts sparse tensor types and primitives to actual compiler
// visible buffers and actual compiler IR that implements these primitives on
// the selected sparse tensor storage schemes. This pass provides an alternative
// to the SparseTensorConversion pass, eliminating the dependence on a runtime
// support library, and providing much more opportunities for subsequent
// compiler optimization of the generated code.
//
//===----------------------------------------------------------------------===//

#include "CodegenUtils.h"
#include "SparseTensorStorageLayout.h"

#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SparseTensor/IR/Enums.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Transforms/DialectConversion.h"
#include <optional>

using namespace mlir;
using namespace mlir::sparse_tensor;

namespace {

using FuncGeneratorType =
    function_ref<void(OpBuilder &, ModuleOp, func::FuncOp, RankedTensorType)>;

static constexpr const char kInsertFuncNamePrefix[] = "_insert_";

//===----------------------------------------------------------------------===//
// Helper methods.
//===----------------------------------------------------------------------===//

/// Flatten a list of operands that may contain sparse tensors.
static void flattenOperands(ValueRange operands,
                            SmallVectorImpl<Value> &flattened) {
  // In case of
  // sparse_tensor, c, sparse_tensor
  // ==>
  // memref ..., c, memref ...
  for (auto operand : operands) {
    if (getSparseTensorEncoding(operand.getType())) {
      auto tuple = getTuple(operand);
      // An unrealized_conversion_cast will be inserted by type converter to
      // inter-mix the gap between 1:N conversion between sparse tensors and
      // fields. In this case, take the operands in the cast and replace the
      // sparse tensor output with the flattened type array.
      flattened.append(tuple.getOperands().begin(), tuple.getOperands().end());
    } else {
      flattened.push_back(operand);
    }
  }
}

/// Adds index conversions where needed.
static Value toType(OpBuilder &builder, Location loc, Value value, Type tp) {
  if (value.getType() != tp)
    return builder.create<arith::IndexCastOp>(loc, tp, value);
  return value;
}

/// Generates a load with proper index typing.
static Value genLoad(OpBuilder &builder, Location loc, Value mem, Value idx) {
  idx = toType(builder, loc, idx, builder.getIndexType());
  return builder.create<memref::LoadOp>(loc, mem, idx);
}

/// Generates a store with proper index typing and (for indices) proper value.
static void genStore(OpBuilder &builder, Location loc, Value val, Value mem,
                     Value idx) {
  idx = toType(builder, loc, idx, builder.getIndexType());
  val = toType(builder, loc, val,
               mem.getType().cast<ShapedType>().getElementType());
  builder.create<memref::StoreOp>(loc, val, mem, idx);
}

/// Creates a straightforward counting for-loop.
static scf::ForOp createFor(OpBuilder &builder, Location loc, Value upper,
                            MutableArrayRef<Value> fields,
                            Value lower = Value()) {
  Type indexType = builder.getIndexType();
  if (!lower)
    lower = constantZero(builder, loc, indexType);
  Value one = constantOne(builder, loc, indexType);
  scf::ForOp forOp = builder.create<scf::ForOp>(loc, lower, upper, one, fields);
  for (unsigned i = 0, e = fields.size(); i < e; i++)
    fields[i] = forOp.getRegionIterArg(i);
  builder.setInsertionPointToStart(forOp.getBody());
  return forOp;
}

/// Gets the dimension size for the given sparse tensor at the given
/// original dimension 'dim'.
static Value sizeFromTensorAtDim(OpBuilder &builder, Location loc,
                                 SparseTensorDescriptor desc, unsigned dim) {
  RankedTensorType rtp = desc.getTensorType();
  // Access into static dimension can query original type directly.
  // Note that this is typically already done by DimOp's folding.
  auto shape = rtp.getShape();
  if (!ShapedType::isDynamic(shape[dim]))
    return constantIndex(builder, loc, shape[dim]);

  // Any other query can consult the dimSizes array at field DimSizesIdx,
  // accounting for the reordering applied to the sparse storage.
  return desc.getDimSize(builder, loc, toStoredDim(rtp, dim));
}

// Gets the dimension size at the given stored level 'lvl', either as a
// constant for a static size, or otherwise dynamically through memSizes.
static Value sizeFromTensorAtLvl(OpBuilder &builder, Location loc,
                                 SparseTensorDescriptor desc, unsigned lvl) {
  return sizeFromTensorAtDim(builder, loc, desc,
                             toOrigDim(desc.getTensorType(), lvl));
}

static void createPushback(OpBuilder &builder, Location loc,
                           MutSparseTensorDescriptor desc,
                           SparseTensorFieldKind kind,
                           std::optional<unsigned> dim, Value value,
                           Value repeat = Value()) {
  Type etp = desc.getMemRefElementType(kind, dim);
  Value field = desc.getMemRefField(kind, dim);
  StorageSpecifierKind specFieldKind = toSpecifierKind(kind);

  auto pushBackOp = builder.create<PushBackOp>(
      loc, desc.getSpecifierField(builder, loc, specFieldKind, dim), field,
      toType(builder, loc, value, etp), repeat);

  desc.setMemRefField(kind, dim, pushBackOp.getOutBuffer());
  desc.setSpecifierField(builder, loc, specFieldKind, dim,
                         pushBackOp.getNewSize());
}

/// Generates code that allocates a sparse storage scheme for given rank.
static void allocSchemeForRank(OpBuilder &builder, Location loc,
                               MutSparseTensorDescriptor desc, unsigned r0) {
  RankedTensorType rtp = desc.getTensorType();
  unsigned rank = rtp.getShape().size();
  Value linear = constantIndex(builder, loc, 1);
  for (unsigned r = r0; r < rank; r++) {
    if (isCompressedDim(rtp, r)) {
      // Append linear x pointers, initialized to zero. Since each compressed
      // dimension initially already has a single zero entry, this maintains
      // the desired "linear + 1" length property at all times.
      Type ptrType = getSparseTensorEncoding(rtp).getPointerType();
      Value ptrZero = constantZero(builder, loc, ptrType);
      createPushback(builder, loc, desc, SparseTensorFieldKind::PtrMemRef, r,
                     ptrZero, linear);
      return;
    }
    if (isSingletonDim(rtp, r)) {
      return; // nothing to do
    }
    // Keep compounding the size, but nothing needs to be initialized
    // at this level. We will eventually reach a compressed level or
    // otherwise the values array for the from-here "all-dense" case.
    assert(isDenseDim(rtp, r));
    Value size = sizeFromTensorAtLvl(builder, loc, desc, r);
    linear = builder.create<arith::MulIOp>(loc, linear, size);
  }
  // Reached values array so prepare for an insertion.
  Value valZero = constantZero(builder, loc, rtp.getElementType());
  createPushback(builder, loc, desc, SparseTensorFieldKind::ValMemRef,
                 std::nullopt, valZero, linear);
}

/// Creates allocation operation.
static Value createAllocation(OpBuilder &builder, Location loc,
                              MemRefType memRefType, Value sz,
                              bool enableInit) {
  Value buffer = builder.create<memref::AllocOp>(loc, memRefType, sz);
  Type elemType = memRefType.getElementType();
  if (enableInit) {
    Value fillValue = constantZero(builder, loc, elemType);
    builder.create<linalg::FillOp>(loc, fillValue, buffer);
  }
  return buffer;
}

/// Creates allocation for each field in sparse tensor type. Note that
/// for all dynamic memrefs, the memory size is really the capacity of
/// the "vector", while the actual size resides in the sizes array.
///
/// TODO: for efficiency, we will need heuristis to make educated guesses
///       on the required capacities (see heuristic variable).
///
static void createAllocFields(OpBuilder &builder, Location loc, Type type,
                              ValueRange dynSizes, bool enableInit,
                              SmallVectorImpl<Value> &fields) {
  RankedTensorType rtp = type.cast<RankedTensorType>();
  // Build original sizes.
  SmallVector<Value> sizes;
  auto shape = rtp.getShape();
  unsigned rank = shape.size();
  for (unsigned r = 0, o = 0; r < rank; r++) {
    if (ShapedType::isDynamic(shape[r]))
      sizes.push_back(dynSizes[o++]);
    else
      sizes.push_back(constantIndex(builder, loc, shape[r]));
  }

  Value heuristic = constantIndex(builder, loc, 16);
  Value valHeuristic = heuristic;
  SparseTensorEncodingAttr enc = getSparseTensorEncoding(rtp);
  if (enc.isAllDense()) {
    Value linear = sizes[0];
    for (unsigned r = 1; r < rank; r++) {
      linear = builder.create<arith::MulIOp>(loc, linear, sizes[r]);
    }
    valHeuristic = linear;
  }
  foreachFieldAndTypeInSparseTensor(
      rtp,
      [&builder, &fields, rtp, loc, heuristic, valHeuristic,
       enableInit](Type fType, unsigned fIdx, SparseTensorFieldKind fKind,
                   unsigned /*dim*/, DimLevelType /*dlt*/) -> bool {
        assert(fields.size() == fIdx);
        Value field;
        switch (fKind) {
        case SparseTensorFieldKind::StorageSpec:
          field = SparseTensorSpecifier::getInitValue(builder, loc, rtp);
          break;
        case SparseTensorFieldKind::PtrMemRef:
        case SparseTensorFieldKind::IdxMemRef:
        case SparseTensorFieldKind::ValMemRef:
          field = createAllocation(builder, loc, fType.cast<MemRefType>(),
                                   fKind == SparseTensorFieldKind::ValMemRef
                                       ? valHeuristic
                                       : heuristic,
                                   enableInit);
          break;
        }
        assert(field);
        fields.push_back(field);
        // Returns true to continue the iteration.
        return true;
      });

  MutSparseTensorDescriptor desc(rtp, fields);

  // Initialize the storage scheme to an empty tensor. Initialized memSizes
  // to all zeros, sets the dimSizes to known values and gives all pointer
  // fields an initial zero entry, so that it is easier to maintain the
  // "linear + 1" length property.
  Value ptrZero =
      constantZero(builder, loc, getSparseTensorEncoding(rtp).getPointerType());
  for (unsigned r = 0; r < rank; r++) {
    unsigned ro = toOrigDim(rtp, r);
    // Fills dim sizes array.
    desc.setDimSize(builder, loc, r, sizes[ro]);

    // Pushes a leading zero to pointers memref.
    if (isCompressedDim(rtp, r)) {
      createPushback(builder, loc, desc, SparseTensorFieldKind::PtrMemRef, r,
                     ptrZero);
    }
  }
  allocSchemeForRank(builder, loc, desc, /*rank=*/0);
}

/// Helper method that generates block specific to compressed case:
///
///  plo = pointers[d][pos[d-1]]
///  phi = pointers[d][pos[d-1]+1]
///  msz = indices[d].size()
///  if (plo < phi) {
///    present = indices[d][phi-1] == i[d]
///  } else { // first insertion
///    present = false
///    pointers[d][pos[d-1]] = msz
///  }
///  if (present) { // index already present
///    next = phi-1
///  } else {
///    indices[d].push_back(i[d])
///    pointers[d][pos[d-1]+1] = msz+1
///    next = msz
///    <prepare dimension d + 1>
///  }
///  pos[d] = next
static Value genCompressed(OpBuilder &builder, Location loc,
                           MutSparseTensorDescriptor desc,
                           SmallVectorImpl<Value> &indices, Value value,
                           Value pos, unsigned d) {
  RankedTensorType rtp = desc.getTensorType();
  unsigned rank = rtp.getShape().size();
  SmallVector<Type> types;
  Type indexType = builder.getIndexType();
  Type boolType = builder.getIntegerType(1);
  unsigned idxIndex;
  unsigned idxStride;
  std::tie(idxIndex, idxStride) = desc.getIdxMemRefIndexAndStride(d);
  Value one = constantIndex(builder, loc, 1);
  Value pp1 = builder.create<arith::AddIOp>(loc, pos, one);
  Value plo = genLoad(builder, loc, desc.getPtrMemRef(d), pos);
  Value phi = genLoad(builder, loc, desc.getPtrMemRef(d), pp1);
  Value msz = desc.getIdxMemSize(builder, loc, d);
  Value idxStrideC;
  if (idxStride > 1) {
    idxStrideC = constantIndex(builder, loc, idxStride);
    msz = builder.create<arith::DivUIOp>(loc, msz, idxStrideC);
  }
  Value phim1 = builder.create<arith::SubIOp>(
      loc, toType(builder, loc, phi, indexType), one);
  // Conditional expression.
  Value lt =
      builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult, plo, phi);
  types.push_back(boolType);
  scf::IfOp ifOp1 = builder.create<scf::IfOp>(loc, types, lt, /*else*/ true);
  types.pop_back();
  builder.setInsertionPointToStart(&ifOp1.getThenRegion().front());
  Value crd = genLoad(
      builder, loc, desc.getMemRefField(idxIndex),
      idxStride > 1 ? builder.create<arith::MulIOp>(loc, phim1, idxStrideC)
                    : phim1);
  Value eq = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
                                           toType(builder, loc, crd, indexType),
                                           indices[d]);
  builder.create<scf::YieldOp>(loc, eq);
  builder.setInsertionPointToStart(&ifOp1.getElseRegion().front());
  if (d > 0)
    genStore(builder, loc, msz, desc.getPtrMemRef(d), pos);
  builder.create<scf::YieldOp>(loc, constantI1(builder, loc, false));
  builder.setInsertionPointAfter(ifOp1);
  Value p = ifOp1.getResult(0);
  // If present construct. Note that for a non-unique dimension level, we
  // simply set the condition to false and rely on CSE/DCE to clean up the IR.
  //
  // TODO: generate less temporary IR?
  //
  for (unsigned i = 0, e = desc.getNumFields(); i < e; i++)
    types.push_back(desc.getField(i).getType());
  types.push_back(indexType);
  if (!isUniqueDim(rtp, d))
    p = constantI1(builder, loc, false);
  scf::IfOp ifOp2 = builder.create<scf::IfOp>(loc, types, p, /*else*/ true);
  // If present (fields unaffected, update next to phim1).
  builder.setInsertionPointToStart(&ifOp2.getThenRegion().front());

  // FIXME: This does not looks like a clean way, but probably the most
  // efficient way.
  desc.getFields().push_back(phim1);
  builder.create<scf::YieldOp>(loc, desc.getFields());
  desc.getFields().pop_back();

  // If !present (changes fields, update next).
  builder.setInsertionPointToStart(&ifOp2.getElseRegion().front());
  Value mszp1 = builder.create<arith::AddIOp>(loc, msz, one);
  genStore(builder, loc, mszp1, desc.getPtrMemRef(d), pp1);
  createPushback(builder, loc, desc, SparseTensorFieldKind::IdxMemRef, d,
                 indices[d]);
  // Prepare the next dimension "as needed".
  if ((d + 1) < rank)
    allocSchemeForRank(builder, loc, desc, d + 1);

  desc.getFields().push_back(msz);
  builder.create<scf::YieldOp>(loc, desc.getFields());
  desc.getFields().pop_back();

  // Update fields and return next pos.
  builder.setInsertionPointAfter(ifOp2);
  unsigned o = 0;
  for (unsigned i = 0, e = desc.getNumFields(); i < e; i++)
    desc.setField(i, ifOp2.getResult(o++));
  return ifOp2.getResult(o);
}

/// Generates code along an insertion path without the need for a "cursor".
/// This current insertion strategy comes at the expense of some testing
/// overhead for each insertion. The strategy will be optimized later for
/// common insertion patterns. The current insertion strategy also assumes
/// insertions occur in "a reasonable order" that enables building the
/// storage scheme in an appending/inserting kind of fashion (i.e. no
/// in-between insertions that need data movement). The implementation
/// relies on CSE/DCE to clean up all bookkeeping that is not needed.
///
/// TODO: better unord/not-unique; also generalize, optimize, specialize!
///
static void genInsertBody(OpBuilder &builder, ModuleOp module,
                          func::FuncOp func, RankedTensorType rtp) {
  OpBuilder::InsertionGuard insertionGuard(builder);
  Block *entryBlock = func.addEntryBlock();
  builder.setInsertionPointToStart(entryBlock);

  Location loc = func.getLoc();
  ValueRange args = entryBlock->getArguments();
  unsigned rank = rtp.getShape().size();

  // Construct fields and indices arrays from parameters.
  ValueRange tmp = args.drop_back(rank + 1);
  SmallVector<Value> fields(tmp.begin(), tmp.end());
  MutSparseTensorDescriptor desc(rtp, fields);
  tmp = args.take_back(rank + 1).drop_back();
  SmallVector<Value> indices(tmp.begin(), tmp.end());
  Value value = args.back();
  Value pos = constantZero(builder, loc, builder.getIndexType());
  // Generate code for every dimension.
  for (unsigned d = 0; d < rank; d++) {
    if (isCompressedDim(rtp, d)) {
      // Create:
      //   if (!present) {
      //     indices[d].push_back(i[d])
      //     <update pointers and prepare dimension d + 1>
      //   }
      //   pos[d] = indices.size() - 1
      //   <insert @ pos[d] at next dimension d + 1>
      pos = genCompressed(builder, loc, desc, indices, value, pos, d);
    } else if (isSingletonDim(rtp, d)) {
      // Create:
      //   indices[d].push_back(i[d])
      //   pos[d] = pos[d-1]
      //   <insert @ pos[d] at next dimension d + 1>
      createPushback(builder, loc, desc, SparseTensorFieldKind::IdxMemRef, d,
                     indices[d]);
    } else {
      assert(isDenseDim(rtp, d));
      // Construct the new position as:
      //   pos[d] = size * pos[d-1] + i[d]
      //   <insert @ pos[d] at next dimension d + 1>
      Value size = sizeFromTensorAtLvl(builder, loc, desc, d);
      Value mult = builder.create<arith::MulIOp>(loc, size, pos);
      pos = builder.create<arith::AddIOp>(loc, mult, indices[d]);
    }
  }
  // Reached the actual value append/insert.
  if (!isDenseDim(rtp, rank - 1))
    createPushback(builder, loc, desc, SparseTensorFieldKind::ValMemRef,
                   std::nullopt, value);
  else
    genStore(builder, loc, value, desc.getValMemRef(), pos);
  builder.create<func::ReturnOp>(loc, fields);
}

/// Generates a call to a function to perform an insertion operation. If the
/// function doesn't exist yet, call `createFunc` to generate the function.
static void genInsertionCallHelper(OpBuilder &builder,
                                   MutSparseTensorDescriptor desc,
                                   SmallVectorImpl<Value> &indices, Value value,
                                   func::FuncOp insertPoint,
                                   StringRef namePrefix,
                                   FuncGeneratorType createFunc) {
  // The mangled name of the function has this format:
  //   <namePrefix>_<DLT>_<shape>_<ordering>_<eltType>
  //     _<indexBitWidth>_<pointerBitWidth>
  RankedTensorType rtp = desc.getTensorType();
  SmallString<32> nameBuffer;
  llvm::raw_svector_ostream nameOstream(nameBuffer);
  nameOstream << namePrefix;
  unsigned rank = rtp.getShape().size();
  assert(rank == indices.size());
  for (unsigned d = 0; d < rank; d++) {
    nameOstream << toMLIRString(getDimLevelType(rtp, d)) << "_";
  }
  // Static dim sizes are used in the generated code while dynamic sizes are
  // loaded from the dimSizes buffer. This is the reason for adding the shape
  // to the function name.
  for (auto d : rtp.getShape())
    nameOstream << d << "_";
  SparseTensorEncodingAttr enc = getSparseTensorEncoding(rtp);
  // Permutation information is also used in generating insertion.
  if (enc.getDimOrdering() && !enc.getDimOrdering().isIdentity())
    nameOstream << enc.getDimOrdering() << "_";
  nameOstream << rtp.getElementType() << "_";
  nameOstream << enc.getIndexBitWidth() << "_" << enc.getPointerBitWidth();

  // Look up the function.
  ModuleOp module = insertPoint->getParentOfType<ModuleOp>();
  MLIRContext *context = module.getContext();
  auto result = SymbolRefAttr::get(context, nameOstream.str());
  auto func = module.lookupSymbol<func::FuncOp>(result.getAttr());

  // Construct parameters for fields and indices.
  SmallVector<Value> operands(desc.getFields().begin(), desc.getFields().end());
  operands.append(indices.begin(), indices.end());
  operands.push_back(value);
  Location loc = insertPoint.getLoc();

  if (!func) {
    // Create the function.
    OpBuilder::InsertionGuard insertionGuard(builder);
    builder.setInsertionPoint(insertPoint);

    func = builder.create<func::FuncOp>(
        loc, nameOstream.str(),
        FunctionType::get(context, ValueRange(operands).getTypes(),
                          ValueRange(desc.getFields()).getTypes()));
    func.setPrivate();
    createFunc(builder, module, func, rtp);
  }

  // Generate a call to perform the insertion and update `fields` with values
  // returned from the call.
  func::CallOp call = builder.create<func::CallOp>(loc, func, operands);
  for (size_t i = 0, e = desc.getNumFields(); i < e; i++) {
    desc.getFields()[i] = call.getResult(i);
  }
}

/// Generations insertion finalization code.
static void genEndInsert(OpBuilder &builder, Location loc,
                         SparseTensorDescriptor desc) {
  RankedTensorType rtp = desc.getTensorType();
  unsigned rank = rtp.getShape().size();
  for (unsigned d = 0; d < rank; d++) {
    if (isCompressedDim(rtp, d)) {
      // Compressed dimensions need a pointer cleanup for all entries
      // that were not visited during the insertion pass.
      //
      // TODO: avoid cleanup and keep compressed scheme consistent at all
      // times?
      //
      if (d > 0) {
        Type ptrType = getSparseTensorEncoding(rtp).getPointerType();
        Value ptrMemRef = desc.getPtrMemRef(d);
        Value hi = desc.getPtrMemSize(builder, loc, d);
        Value zero = constantIndex(builder, loc, 0);
        Value one = constantIndex(builder, loc, 1);
        // Vector of only one, but needed by createFor's prototype.
        SmallVector<Value, 1> inits{genLoad(builder, loc, ptrMemRef, zero)};
        scf::ForOp loop = createFor(builder, loc, hi, inits, one);
        Value i = loop.getInductionVar();
        Value oldv = loop.getRegionIterArg(0);
        Value newv = genLoad(builder, loc, ptrMemRef, i);
        Value ptrZero = constantZero(builder, loc, ptrType);
        Value cond = builder.create<arith::CmpIOp>(
            loc, arith::CmpIPredicate::eq, newv, ptrZero);
        scf::IfOp ifOp = builder.create<scf::IfOp>(loc, TypeRange(ptrType),
                                                   cond, /*else*/ true);
        builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
        genStore(builder, loc, oldv, ptrMemRef, i);
        builder.create<scf::YieldOp>(loc, oldv);
        builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
        builder.create<scf::YieldOp>(loc, newv);
        builder.setInsertionPointAfter(ifOp);
        builder.create<scf::YieldOp>(loc, ifOp.getResult(0));
        builder.setInsertionPointAfter(loop);
      }
    } else {
      assert(isDenseDim(rtp, d) || isSingletonDim(rtp, d));
    }
  }
}

//===----------------------------------------------------------------------===//
// Codegen rules.
//===----------------------------------------------------------------------===//

/// Sparse tensor storage conversion rule for returns.
class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> {
public:
  using OpConversionPattern::OpConversionPattern;
  LogicalResult
  matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    SmallVector<Value> flattened;
    flattenOperands(adaptor.getOperands(), flattened);
    // Create a return with the flattened value extracted from sparse tensors.
    rewriter.replaceOpWithNewOp<func::ReturnOp>(op, flattened);
    return success();
  }
};

/// Sparse tensor storage conversion rule for calls.
class SparseCallConverter : public OpConversionPattern<func::CallOp> {
public:
  // The default CallOp converter can not handle 1:N type conversion.
  using OpConversionPattern::OpConversionPattern;
  LogicalResult
  matchAndRewrite(func::CallOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Location loc = op.getLoc();
    // In case of:
    //  sparse_tensor, f, sparse_tensor = call @foo(...)
    // ==>
    //  memref..., f, memref = call @foo(...) replace with
    //  cast(memref...)->sparse_tensor, f, cast(memref...)->sparse_tensor
    SmallVector<Type> finalRetTy;
    if (failed(typeConverter->convertTypes(op.getResultTypes(), finalRetTy)))
      return failure();

    // (1) Genereates new call with flattened return value.
    SmallVector<Value> flattened;
    flattenOperands(adaptor.getOperands(), flattened);
    auto newCall = rewriter.create<func::CallOp>(loc, op.getCallee(),
                                                 finalRetTy, flattened);
    // (2) Create cast operation for sparse tensor returns.
    SmallVector<Value> castedRet;
    // Tracks the offset of current return value (of the orignal call)
    // relative to the new call (after sparse tensor flattening);
    unsigned retOffset = 0;
    // Temporal buffer to hold the flattened list of type for
    // a sparse tensor.
    SmallVector<Type> sparseFlat;
    for (auto ret : op.getResults()) {
      assert(retOffset < newCall.getNumResults());
      auto retType = ret.getType();
      if (failed(typeConverter->convertType(retType, sparseFlat)))
        // This should never happen.
        llvm_unreachable("Failed to convert type in sparse tensor codegen");

      // Converted types can not be empty when the type conversion succeed.
      assert(!sparseFlat.empty());
      if (sparseFlat.size() > 1) {
        auto flatSize = sparseFlat.size();
        ValueRange fields(iterator_range<ResultRange::iterator>(
            newCall.result_begin() + retOffset,
            newCall.result_begin() + retOffset + flatSize));
        castedRet.push_back(genTuple(rewriter, loc, retType, fields));
        retOffset += flatSize;
      } else {
        // If this is an 1:1 conversion, no need for casting.
        castedRet.push_back(newCall.getResult(retOffset));
        retOffset++;
      }
      sparseFlat.clear();
    }

    assert(castedRet.size() == op.getNumResults());
    rewriter.replaceOp(op, castedRet);
    return success();
  }
};

/// Sparse codegen rule for dimension accesses.
class SparseDimOpConverter : public OpConversionPattern<tensor::DimOp> {
public:
  using OpConversionPattern::OpConversionPattern;
  LogicalResult
  matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    std::optional<int64_t> index = op.getConstantIndex();
    if (!index || !getSparseTensorEncoding(adaptor.getSource().getType()))
      return failure();

    auto desc = getDescriptorFromTensorTuple(adaptor.getSource());
    auto sz = sizeFromTensorAtDim(rewriter, op.getLoc(), desc, *index);

    rewriter.replaceOp(op, sz);
    return success();
  }
};

/// Sparse codegen rule for trivial tensor casts.
class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
public:
  using OpConversionPattern::OpConversionPattern;
  LogicalResult
  matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    // Only rewrite identically annotated source/dest.
    auto encDst = getSparseTensorEncoding(op.getType());
    auto encSrc = getSparseTensorEncoding(op.getSource().getType());
    if (!encDst || encDst != encSrc)
      return failure();
    rewriter.replaceOp(op, adaptor.getOperands());
    return success();
  }
};

/// Sparse codgen rule for the alloc operator.
class SparseTensorAllocConverter
    : public OpConversionPattern<bufferization::AllocTensorOp> {
public:
  using OpConversionPattern::OpConversionPattern;
  SparseTensorAllocConverter(TypeConverter &typeConverter, MLIRContext *context,
                             bool enableInit)
      : OpConversionPattern(typeConverter, context),
        enableBufferInitialization(enableInit) {}

  LogicalResult
  matchAndRewrite(bufferization::AllocTensorOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    RankedTensorType resType = op.getType();
    auto enc = getSparseTensorEncoding(resType);
    if (!enc)
      return failure();
    if (op.getCopy())
      return rewriter.notifyMatchFailure(op, "tensor copy not implemented");

    // Construct allocation for each field.
    Location loc = op.getLoc();
    SmallVector<Value> fields;
    createAllocFields(rewriter, loc, resType, adaptor.getOperands(),
                      enableBufferInitialization, fields);
    // Replace operation with resulting memrefs.
    rewriter.replaceOp(op, genTuple(rewriter, loc, resType, fields));
    return success();
  }

private:
  bool enableBufferInitialization;
};

/// Sparse codegen rule for the dealloc operator.
class SparseTensorDeallocConverter
    : public OpConversionPattern<bufferization::DeallocTensorOp> {
public:
  using OpConversionPattern::OpConversionPattern;
  LogicalResult
  matchAndRewrite(bufferization::DeallocTensorOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto enc = getSparseTensorEncoding(op.getTensor().getType());
    if (!enc)
      return failure();

    // Replace the sparse tensor deallocation with field deallocations.
    Location loc = op.getLoc();
    auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
    for (auto input : desc.getMemRefFields())
      // Deallocate every buffer used to store the sparse tensor handler.
      rewriter.create<memref::DeallocOp>(loc, input);

    rewriter.eraseOp(op);
    return success();
  }
};

/// Sparse codegen rule for tensor rematerialization.
class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
public:
  using OpConversionPattern::OpConversionPattern;
  LogicalResult
  matchAndRewrite(LoadOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    // Prepare descriptor.
    auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
    // Generate optional insertion finalization code.
    if (op.getHasInserts())
      genEndInsert(rewriter, op.getLoc(), desc);
    // Replace operation with resulting memrefs.
    rewriter.replaceOp(op, genTuple(rewriter, op.getLoc(), desc));
    return success();
  }
};

/// Sparse codegen rule for the expand op.
class SparseExpandConverter : public OpConversionPattern<ExpandOp> {
public:
  using OpConversionPattern::OpConversionPattern;
  LogicalResult
  matchAndRewrite(ExpandOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    if (!getSparseTensorEncoding(op.getTensor().getType()))
      return failure();
    Location loc = op->getLoc();
    auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
    auto srcType = getRankedTensorType(op.getTensor());
    Type eltType = srcType.getElementType();
    Type boolType = rewriter.getIntegerType(1);
    Type idxType = rewriter.getIndexType();
    // All initialization should be done on entry of the loop nest.
    rewriter.setInsertionPointAfter(op.getTensor().getDefiningOp());
    // Determine the size for access expansion (always the innermost stored
    // dimension size, translated back to original dimension). Note that we
    // recursively rewrite the new DimOp on the **original** tensor.
    unsigned innerDim = toOrigDim(srcType, srcType.getRank() - 1);
    auto sz = sizeFromTensorAtDim(rewriter, loc, desc, innerDim);
    // Generate a memref for `sz` elements of type `t`.
    auto genAlloc = [&](Type t) {
      auto memTp = MemRefType::get({ShapedType::kDynamic}, t);
      return rewriter.create<memref::AllocOp>(loc, memTp, ValueRange{sz});
    };
    // Allocate temporary buffers for values/filled-switch and added.
    // We do not use stack buffers for this, since the expanded size may
    // be rather large (as it envelops a single expanded dense dimension).
    Value values = genAlloc(eltType);
    Value filled = genAlloc(boolType);
    Value added = genAlloc(idxType);
    Value zero = constantZero(rewriter, loc, idxType);
    // Reset the values/filled-switch to all-zero/false. Note that this
    // introduces an O(N) operation into the computation, but this reset
    // operation is amortized over the innermost loops for the access
    // pattern expansion. As noted in the operation doc, we would like
    // to amortize this setup cost even between kernels.
    rewriter.create<linalg::FillOp>(
        loc, ValueRange{constantZero(rewriter, loc, eltType)},
        ValueRange{values});
    rewriter.create<linalg::FillOp>(
        loc, ValueRange{constantZero(rewriter, loc, boolType)},
        ValueRange{filled});
    // Replace expansion op with these buffers and initial index.
    assert(op.getNumResults() == 4);
    rewriter.replaceOp(op, {values, filled, added, zero});
    return success();
  }
};

/// Sparse codegen rule for the compress operator.
class SparseCompressConverter : public OpConversionPattern<CompressOp> {
public:
  using OpConversionPattern::OpConversionPattern;
  LogicalResult
  matchAndRewrite(CompressOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Location loc = op->getLoc();
    SmallVector<Value> fields;
    auto desc = getMutDescriptorFromTensorTuple(adaptor.getTensor(), fields);
    Value values = adaptor.getValues();
    Value filled = adaptor.getFilled();
    Value added = adaptor.getAdded();
    Value count = adaptor.getCount();
    RankedTensorType dstType = desc.getTensorType();
    Type eltType = dstType.getElementType();
    // Prepare indices.
    SmallVector<Value> indices(adaptor.getIndices());
    // If the innermost dimension is ordered, we need to sort the indices
    // in the "added" array prior to applying the compression.
    unsigned rank = dstType.getShape().size();
    if (isOrderedDim(dstType, rank - 1))
      rewriter.create<SortOp>(loc, count, ValueRange{added}, ValueRange{});
    // While performing the insertions, we also need to reset the elements
    // of the values/filled-switch by only iterating over the set elements,
    // to ensure that the runtime complexity remains proportional to the
    // sparsity of the expanded access pattern.
    //
    // Generate
    //    out_memrefs = for (i = 0; i < count; i++)(in_memrefs) {
    //      index = added[i];
    //      value = values[index];
    //      insert({prev_indices, index}, value);
    //      new_memrefs = insert(in_memrefs, {prev_indices, index}, value);
    //      values[index] = 0;
    //      filled[index] = false;
    //      yield new_memrefs
    //    }
    scf::ForOp loop = createFor(rewriter, loc, count, desc.getFields());
    Value i = loop.getInductionVar();
    Value index = genLoad(rewriter, loc, added, i);
    Value value = genLoad(rewriter, loc, values, index);
    indices.push_back(index);
    // TODO: faster for subsequent insertions?
    auto insertPoint = op->template getParentOfType<func::FuncOp>();
    genInsertionCallHelper(rewriter, desc, indices, value, insertPoint,
                           kInsertFuncNamePrefix, genInsertBody);
    genStore(rewriter, loc, constantZero(rewriter, loc, eltType), values,
             index);
    genStore(rewriter, loc, constantI1(rewriter, loc, false), filled, index);
    rewriter.create<scf::YieldOp>(loc, desc.getFields());
    rewriter.setInsertionPointAfter(loop);
    Value result = genTuple(rewriter, loc, dstType, loop->getResults());
    // Deallocate the buffers on exit of the full loop nest.
    Operation *parent = getTop(op);
    rewriter.setInsertionPointAfter(parent);
    rewriter.create<memref::DeallocOp>(loc, values);
    rewriter.create<memref::DeallocOp>(loc, filled);
    rewriter.create<memref::DeallocOp>(loc, added);
    // Replace operation with resulting memrefs.
    rewriter.replaceOp(op, result);
    return success();
  }
};

/// Sparse codegen rule for the insert operator.
class SparseInsertConverter : public OpConversionPattern<InsertOp> {
public:
  using OpConversionPattern::OpConversionPattern;
  LogicalResult
  matchAndRewrite(InsertOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    SmallVector<Value> fields;
    auto desc = getMutDescriptorFromTensorTuple(adaptor.getTensor(), fields);
    // Prepare and indices.
    SmallVector<Value> indices(adaptor.getIndices());
    // Generate insertion.
    Value value = adaptor.getValue();
    auto insertPoint = op->template getParentOfType<func::FuncOp>();
    genInsertionCallHelper(rewriter, desc, indices, value, insertPoint,
                           kInsertFuncNamePrefix, genInsertBody);

    // Replace operation with resulting memrefs.
    rewriter.replaceOp(op, genTuple(rewriter, op.getLoc(), desc));
    return success();
  }
};

/// Sparse codegen rule for pointer accesses.
class SparseToPointersConverter : public OpConversionPattern<ToPointersOp> {
public:
  using OpAdaptor = typename ToPointersOp::Adaptor;
  using OpConversionPattern<ToPointersOp>::OpConversionPattern;
  LogicalResult
  matchAndRewrite(ToPointersOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    // Replace the requested pointer access with corresponding field.
    // The cast_op is inserted by type converter to intermix 1:N type
    // conversion.
    auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
    uint64_t dim = op.getDimension().getZExtValue();
    rewriter.replaceOp(op, desc.getPtrMemRef(dim));
    return success();
  }
};

/// Sparse codegen rule for index accesses.
class SparseToIndicesConverter : public OpConversionPattern<ToIndicesOp> {
public:
  using OpAdaptor = typename ToIndicesOp::Adaptor;
  using OpConversionPattern<ToIndicesOp>::OpConversionPattern;
  LogicalResult
  matchAndRewrite(ToIndicesOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    // Replace the requested pointer access with corresponding field.
    // The cast_op is inserted by type converter to intermix 1:N type
    // conversion.
    Location loc = op.getLoc();
    auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
    uint64_t dim = op.getDimension().getZExtValue();
    Value field = desc.getIdxMemRefOrView(rewriter, loc, dim);

    // Insert a cast to bridge the actual type to the user expected type. If the
    // actual type and the user expected type aren't compatible, the compiler or
    // the runtime will issue an error.
    Type resType = op.getResult().getType();
    if (resType != field.getType())
      field = rewriter.create<memref::CastOp>(loc, resType, field);
    rewriter.replaceOp(op, field);

    return success();
  }
};

/// Sparse codegen rule for accessing the linear indices buffer.
class SparseToIndicesBufferConverter
    : public OpConversionPattern<ToIndicesBufferOp> {
public:
  using OpAdaptor = typename ToIndicesBufferOp::Adaptor;
  using OpConversionPattern<ToIndicesBufferOp>::OpConversionPattern;
  LogicalResult
  matchAndRewrite(ToIndicesBufferOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    // Replace the requested pointer access with corresponding field.
    // The cast_op is inserted by type converter to intermix 1:N type
    // conversion.
    auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
    rewriter.replaceOp(op, desc.getAOSMemRef());

    return success();
  }
};

/// Sparse codegen rule for value accesses.
class SparseToValuesConverter : public OpConversionPattern<ToValuesOp> {
public:
  using OpAdaptor = typename ToValuesOp::Adaptor;
  using OpConversionPattern<ToValuesOp>::OpConversionPattern;
  LogicalResult
  matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    // Replace the requested pointer access with corresponding field.
    // The cast_op is inserted by type converter to intermix 1:N type
    // conversion.
    auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
    rewriter.replaceOp(op, desc.getValMemRef());
    return success();
  }
};

/// Sparse codegen rule for the convert operator.
class SparseConvertConverter : public OpConversionPattern<ConvertOp> {
public:
  using OpConversionPattern::OpConversionPattern;
  LogicalResult
  matchAndRewrite(ConvertOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    SparseTensorEncodingAttr encDst = getSparseTensorEncoding(op.getType());
    SparseTensorEncodingAttr encSrc =
        getSparseTensorEncoding(op.getSource().getType());
    if (encDst != encSrc) {
      // This should be handled by rewriting before codegen.
      return failure();
    }
    rewriter.replaceOp(op, adaptor.getSource());
    return success();
  }
};

/// Sparse codegen rule for number of entries operator.
class SparseNumberOfEntriesConverter
    : public OpConversionPattern<NumberOfEntriesOp> {
public:
  using OpConversionPattern::OpConversionPattern;
  LogicalResult
  matchAndRewrite(NumberOfEntriesOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    // Query memSizes for the actually stored values.
    rewriter.replaceOp(
        op, genValMemSize(rewriter, op.getLoc(), adaptor.getTensor()));
    return success();
  }
};

} // namespace

//===----------------------------------------------------------------------===//
// Public method for populating conversion rules.
//===----------------------------------------------------------------------===//

/// Populates the given patterns list with conversion rules required for
/// the sparsification of linear algebra operations.
void mlir::populateSparseTensorCodegenPatterns(
    TypeConverter &typeConverter, RewritePatternSet &patterns,
    bool enableBufferInitialization) {
  patterns.add<SparseReturnConverter, SparseCallConverter, SparseDimOpConverter,
               SparseCastConverter, SparseTensorDeallocConverter,
               SparseTensorLoadConverter, SparseExpandConverter,
               SparseCompressConverter, SparseInsertConverter,
               SparseToPointersConverter, SparseToIndicesConverter,
               SparseToIndicesBufferConverter, SparseToValuesConverter,
               SparseConvertConverter, SparseNumberOfEntriesConverter>(
      typeConverter, patterns.getContext());
  patterns.add<SparseTensorAllocConverter>(typeConverter, patterns.getContext(),
                                           enableBufferInitialization);
}