1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
|
//===- SparseTensorCodegen.cpp - Sparse tensor primitives conversion ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// A pass that converts sparse tensor types and primitives to actual compiler
// visible buffers and actual compiler IR that implements these primitives on
// the selected sparse tensor storage schemes. This pass provides an alternative
// to the SparseTensorConversion pass, eliminating the dependence on a runtime
// support library, and providing much more opportunities for subsequent
// compiler optimization of the generated code.
//
//===----------------------------------------------------------------------===//
#include "CodegenUtils.h"
#include "SparseTensorStorageLayout.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SparseTensor/IR/Enums.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Transforms/DialectConversion.h"
#include <optional>
using namespace mlir;
using namespace mlir::sparse_tensor;
namespace {
using FuncGeneratorType =
function_ref<void(OpBuilder &, ModuleOp, func::FuncOp, RankedTensorType)>;
static constexpr const char kInsertFuncNamePrefix[] = "_insert_";
//===----------------------------------------------------------------------===//
// Helper methods.
//===----------------------------------------------------------------------===//
/// Flatten a list of operands that may contain sparse tensors.
static void flattenOperands(ValueRange operands,
SmallVectorImpl<Value> &flattened) {
// In case of
// sparse_tensor, c, sparse_tensor
// ==>
// memref ..., c, memref ...
for (auto operand : operands) {
if (getSparseTensorEncoding(operand.getType())) {
auto tuple = getTuple(operand);
// An unrealized_conversion_cast will be inserted by type converter to
// inter-mix the gap between 1:N conversion between sparse tensors and
// fields. In this case, take the operands in the cast and replace the
// sparse tensor output with the flattened type array.
flattened.append(tuple.getOperands().begin(), tuple.getOperands().end());
} else {
flattened.push_back(operand);
}
}
}
/// Adds index conversions where needed.
static Value toType(OpBuilder &builder, Location loc, Value value, Type tp) {
if (value.getType() != tp)
return builder.create<arith::IndexCastOp>(loc, tp, value);
return value;
}
/// Generates a load with proper index typing.
static Value genLoad(OpBuilder &builder, Location loc, Value mem, Value idx) {
idx = toType(builder, loc, idx, builder.getIndexType());
return builder.create<memref::LoadOp>(loc, mem, idx);
}
/// Generates a store with proper index typing and (for indices) proper value.
static void genStore(OpBuilder &builder, Location loc, Value val, Value mem,
Value idx) {
idx = toType(builder, loc, idx, builder.getIndexType());
val = toType(builder, loc, val,
mem.getType().cast<ShapedType>().getElementType());
builder.create<memref::StoreOp>(loc, val, mem, idx);
}
/// Creates a straightforward counting for-loop.
static scf::ForOp createFor(OpBuilder &builder, Location loc, Value upper,
MutableArrayRef<Value> fields,
Value lower = Value()) {
Type indexType = builder.getIndexType();
if (!lower)
lower = constantZero(builder, loc, indexType);
Value one = constantOne(builder, loc, indexType);
scf::ForOp forOp = builder.create<scf::ForOp>(loc, lower, upper, one, fields);
for (unsigned i = 0, e = fields.size(); i < e; i++)
fields[i] = forOp.getRegionIterArg(i);
builder.setInsertionPointToStart(forOp.getBody());
return forOp;
}
/// Gets the dimension size for the given sparse tensor at the given
/// original dimension 'dim'.
static Value sizeFromTensorAtDim(OpBuilder &builder, Location loc,
SparseTensorDescriptor desc, unsigned dim) {
RankedTensorType rtp = desc.getTensorType();
// Access into static dimension can query original type directly.
// Note that this is typically already done by DimOp's folding.
auto shape = rtp.getShape();
if (!ShapedType::isDynamic(shape[dim]))
return constantIndex(builder, loc, shape[dim]);
// Any other query can consult the dimSizes array at field DimSizesIdx,
// accounting for the reordering applied to the sparse storage.
return desc.getDimSize(builder, loc, toStoredDim(rtp, dim));
}
// Gets the dimension size at the given stored level 'lvl', either as a
// constant for a static size, or otherwise dynamically through memSizes.
static Value sizeFromTensorAtLvl(OpBuilder &builder, Location loc,
SparseTensorDescriptor desc, unsigned lvl) {
return sizeFromTensorAtDim(builder, loc, desc,
toOrigDim(desc.getTensorType(), lvl));
}
static void createPushback(OpBuilder &builder, Location loc,
MutSparseTensorDescriptor desc,
SparseTensorFieldKind kind,
std::optional<unsigned> dim, Value value,
Value repeat = Value()) {
Type etp = desc.getMemRefElementType(kind, dim);
Value field = desc.getMemRefField(kind, dim);
StorageSpecifierKind specFieldKind = toSpecifierKind(kind);
auto pushBackOp = builder.create<PushBackOp>(
loc, desc.getSpecifierField(builder, loc, specFieldKind, dim), field,
toType(builder, loc, value, etp), repeat);
desc.setMemRefField(kind, dim, pushBackOp.getOutBuffer());
desc.setSpecifierField(builder, loc, specFieldKind, dim,
pushBackOp.getNewSize());
}
/// Generates code that allocates a sparse storage scheme for given rank.
static void allocSchemeForRank(OpBuilder &builder, Location loc,
MutSparseTensorDescriptor desc, unsigned r0) {
RankedTensorType rtp = desc.getTensorType();
unsigned rank = rtp.getShape().size();
Value linear = constantIndex(builder, loc, 1);
for (unsigned r = r0; r < rank; r++) {
if (isCompressedDim(rtp, r)) {
// Append linear x pointers, initialized to zero. Since each compressed
// dimension initially already has a single zero entry, this maintains
// the desired "linear + 1" length property at all times.
Type ptrType = getSparseTensorEncoding(rtp).getPointerType();
Value ptrZero = constantZero(builder, loc, ptrType);
createPushback(builder, loc, desc, SparseTensorFieldKind::PtrMemRef, r,
ptrZero, linear);
return;
}
if (isSingletonDim(rtp, r)) {
return; // nothing to do
}
// Keep compounding the size, but nothing needs to be initialized
// at this level. We will eventually reach a compressed level or
// otherwise the values array for the from-here "all-dense" case.
assert(isDenseDim(rtp, r));
Value size = sizeFromTensorAtLvl(builder, loc, desc, r);
linear = builder.create<arith::MulIOp>(loc, linear, size);
}
// Reached values array so prepare for an insertion.
Value valZero = constantZero(builder, loc, rtp.getElementType());
createPushback(builder, loc, desc, SparseTensorFieldKind::ValMemRef,
std::nullopt, valZero, linear);
}
/// Creates allocation operation.
static Value createAllocation(OpBuilder &builder, Location loc,
MemRefType memRefType, Value sz,
bool enableInit) {
Value buffer = builder.create<memref::AllocOp>(loc, memRefType, sz);
Type elemType = memRefType.getElementType();
if (enableInit) {
Value fillValue = constantZero(builder, loc, elemType);
builder.create<linalg::FillOp>(loc, fillValue, buffer);
}
return buffer;
}
/// Creates allocation for each field in sparse tensor type. Note that
/// for all dynamic memrefs, the memory size is really the capacity of
/// the "vector", while the actual size resides in the sizes array.
///
/// TODO: for efficiency, we will need heuristis to make educated guesses
/// on the required capacities (see heuristic variable).
///
static void createAllocFields(OpBuilder &builder, Location loc, Type type,
ValueRange dynSizes, bool enableInit,
SmallVectorImpl<Value> &fields) {
RankedTensorType rtp = type.cast<RankedTensorType>();
// Build original sizes.
SmallVector<Value> sizes;
auto shape = rtp.getShape();
unsigned rank = shape.size();
for (unsigned r = 0, o = 0; r < rank; r++) {
if (ShapedType::isDynamic(shape[r]))
sizes.push_back(dynSizes[o++]);
else
sizes.push_back(constantIndex(builder, loc, shape[r]));
}
Value heuristic = constantIndex(builder, loc, 16);
Value valHeuristic = heuristic;
SparseTensorEncodingAttr enc = getSparseTensorEncoding(rtp);
if (enc.isAllDense()) {
Value linear = sizes[0];
for (unsigned r = 1; r < rank; r++) {
linear = builder.create<arith::MulIOp>(loc, linear, sizes[r]);
}
valHeuristic = linear;
}
foreachFieldAndTypeInSparseTensor(
rtp,
[&builder, &fields, rtp, loc, heuristic, valHeuristic,
enableInit](Type fType, unsigned fIdx, SparseTensorFieldKind fKind,
unsigned /*dim*/, DimLevelType /*dlt*/) -> bool {
assert(fields.size() == fIdx);
Value field;
switch (fKind) {
case SparseTensorFieldKind::StorageSpec:
field = SparseTensorSpecifier::getInitValue(builder, loc, rtp);
break;
case SparseTensorFieldKind::PtrMemRef:
case SparseTensorFieldKind::IdxMemRef:
case SparseTensorFieldKind::ValMemRef:
field = createAllocation(builder, loc, fType.cast<MemRefType>(),
fKind == SparseTensorFieldKind::ValMemRef
? valHeuristic
: heuristic,
enableInit);
break;
}
assert(field);
fields.push_back(field);
// Returns true to continue the iteration.
return true;
});
MutSparseTensorDescriptor desc(rtp, fields);
// Initialize the storage scheme to an empty tensor. Initialized memSizes
// to all zeros, sets the dimSizes to known values and gives all pointer
// fields an initial zero entry, so that it is easier to maintain the
// "linear + 1" length property.
Value ptrZero =
constantZero(builder, loc, getSparseTensorEncoding(rtp).getPointerType());
for (unsigned r = 0; r < rank; r++) {
unsigned ro = toOrigDim(rtp, r);
// Fills dim sizes array.
desc.setDimSize(builder, loc, r, sizes[ro]);
// Pushes a leading zero to pointers memref.
if (isCompressedDim(rtp, r)) {
createPushback(builder, loc, desc, SparseTensorFieldKind::PtrMemRef, r,
ptrZero);
}
}
allocSchemeForRank(builder, loc, desc, /*rank=*/0);
}
/// Helper method that generates block specific to compressed case:
///
/// plo = pointers[d][pos[d-1]]
/// phi = pointers[d][pos[d-1]+1]
/// msz = indices[d].size()
/// if (plo < phi) {
/// present = indices[d][phi-1] == i[d]
/// } else { // first insertion
/// present = false
/// pointers[d][pos[d-1]] = msz
/// }
/// if (present) { // index already present
/// next = phi-1
/// } else {
/// indices[d].push_back(i[d])
/// pointers[d][pos[d-1]+1] = msz+1
/// next = msz
/// <prepare dimension d + 1>
/// }
/// pos[d] = next
static Value genCompressed(OpBuilder &builder, Location loc,
MutSparseTensorDescriptor desc,
SmallVectorImpl<Value> &indices, Value value,
Value pos, unsigned d) {
RankedTensorType rtp = desc.getTensorType();
unsigned rank = rtp.getShape().size();
SmallVector<Type> types;
Type indexType = builder.getIndexType();
Type boolType = builder.getIntegerType(1);
unsigned idxIndex;
unsigned idxStride;
std::tie(idxIndex, idxStride) = desc.getIdxMemRefIndexAndStride(d);
Value one = constantIndex(builder, loc, 1);
Value pp1 = builder.create<arith::AddIOp>(loc, pos, one);
Value plo = genLoad(builder, loc, desc.getPtrMemRef(d), pos);
Value phi = genLoad(builder, loc, desc.getPtrMemRef(d), pp1);
Value msz = desc.getIdxMemSize(builder, loc, d);
Value idxStrideC;
if (idxStride > 1) {
idxStrideC = constantIndex(builder, loc, idxStride);
msz = builder.create<arith::DivUIOp>(loc, msz, idxStrideC);
}
Value phim1 = builder.create<arith::SubIOp>(
loc, toType(builder, loc, phi, indexType), one);
// Conditional expression.
Value lt =
builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult, plo, phi);
types.push_back(boolType);
scf::IfOp ifOp1 = builder.create<scf::IfOp>(loc, types, lt, /*else*/ true);
types.pop_back();
builder.setInsertionPointToStart(&ifOp1.getThenRegion().front());
Value crd = genLoad(
builder, loc, desc.getMemRefField(idxIndex),
idxStride > 1 ? builder.create<arith::MulIOp>(loc, phim1, idxStrideC)
: phim1);
Value eq = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
toType(builder, loc, crd, indexType),
indices[d]);
builder.create<scf::YieldOp>(loc, eq);
builder.setInsertionPointToStart(&ifOp1.getElseRegion().front());
if (d > 0)
genStore(builder, loc, msz, desc.getPtrMemRef(d), pos);
builder.create<scf::YieldOp>(loc, constantI1(builder, loc, false));
builder.setInsertionPointAfter(ifOp1);
Value p = ifOp1.getResult(0);
// If present construct. Note that for a non-unique dimension level, we
// simply set the condition to false and rely on CSE/DCE to clean up the IR.
//
// TODO: generate less temporary IR?
//
for (unsigned i = 0, e = desc.getNumFields(); i < e; i++)
types.push_back(desc.getField(i).getType());
types.push_back(indexType);
if (!isUniqueDim(rtp, d))
p = constantI1(builder, loc, false);
scf::IfOp ifOp2 = builder.create<scf::IfOp>(loc, types, p, /*else*/ true);
// If present (fields unaffected, update next to phim1).
builder.setInsertionPointToStart(&ifOp2.getThenRegion().front());
// FIXME: This does not looks like a clean way, but probably the most
// efficient way.
desc.getFields().push_back(phim1);
builder.create<scf::YieldOp>(loc, desc.getFields());
desc.getFields().pop_back();
// If !present (changes fields, update next).
builder.setInsertionPointToStart(&ifOp2.getElseRegion().front());
Value mszp1 = builder.create<arith::AddIOp>(loc, msz, one);
genStore(builder, loc, mszp1, desc.getPtrMemRef(d), pp1);
createPushback(builder, loc, desc, SparseTensorFieldKind::IdxMemRef, d,
indices[d]);
// Prepare the next dimension "as needed".
if ((d + 1) < rank)
allocSchemeForRank(builder, loc, desc, d + 1);
desc.getFields().push_back(msz);
builder.create<scf::YieldOp>(loc, desc.getFields());
desc.getFields().pop_back();
// Update fields and return next pos.
builder.setInsertionPointAfter(ifOp2);
unsigned o = 0;
for (unsigned i = 0, e = desc.getNumFields(); i < e; i++)
desc.setField(i, ifOp2.getResult(o++));
return ifOp2.getResult(o);
}
/// Generates code along an insertion path without the need for a "cursor".
/// This current insertion strategy comes at the expense of some testing
/// overhead for each insertion. The strategy will be optimized later for
/// common insertion patterns. The current insertion strategy also assumes
/// insertions occur in "a reasonable order" that enables building the
/// storage scheme in an appending/inserting kind of fashion (i.e. no
/// in-between insertions that need data movement). The implementation
/// relies on CSE/DCE to clean up all bookkeeping that is not needed.
///
/// TODO: better unord/not-unique; also generalize, optimize, specialize!
///
static void genInsertBody(OpBuilder &builder, ModuleOp module,
func::FuncOp func, RankedTensorType rtp) {
OpBuilder::InsertionGuard insertionGuard(builder);
Block *entryBlock = func.addEntryBlock();
builder.setInsertionPointToStart(entryBlock);
Location loc = func.getLoc();
ValueRange args = entryBlock->getArguments();
unsigned rank = rtp.getShape().size();
// Construct fields and indices arrays from parameters.
ValueRange tmp = args.drop_back(rank + 1);
SmallVector<Value> fields(tmp.begin(), tmp.end());
MutSparseTensorDescriptor desc(rtp, fields);
tmp = args.take_back(rank + 1).drop_back();
SmallVector<Value> indices(tmp.begin(), tmp.end());
Value value = args.back();
Value pos = constantZero(builder, loc, builder.getIndexType());
// Generate code for every dimension.
for (unsigned d = 0; d < rank; d++) {
if (isCompressedDim(rtp, d)) {
// Create:
// if (!present) {
// indices[d].push_back(i[d])
// <update pointers and prepare dimension d + 1>
// }
// pos[d] = indices.size() - 1
// <insert @ pos[d] at next dimension d + 1>
pos = genCompressed(builder, loc, desc, indices, value, pos, d);
} else if (isSingletonDim(rtp, d)) {
// Create:
// indices[d].push_back(i[d])
// pos[d] = pos[d-1]
// <insert @ pos[d] at next dimension d + 1>
createPushback(builder, loc, desc, SparseTensorFieldKind::IdxMemRef, d,
indices[d]);
} else {
assert(isDenseDim(rtp, d));
// Construct the new position as:
// pos[d] = size * pos[d-1] + i[d]
// <insert @ pos[d] at next dimension d + 1>
Value size = sizeFromTensorAtLvl(builder, loc, desc, d);
Value mult = builder.create<arith::MulIOp>(loc, size, pos);
pos = builder.create<arith::AddIOp>(loc, mult, indices[d]);
}
}
// Reached the actual value append/insert.
if (!isDenseDim(rtp, rank - 1))
createPushback(builder, loc, desc, SparseTensorFieldKind::ValMemRef,
std::nullopt, value);
else
genStore(builder, loc, value, desc.getValMemRef(), pos);
builder.create<func::ReturnOp>(loc, fields);
}
/// Generates a call to a function to perform an insertion operation. If the
/// function doesn't exist yet, call `createFunc` to generate the function.
static void genInsertionCallHelper(OpBuilder &builder,
MutSparseTensorDescriptor desc,
SmallVectorImpl<Value> &indices, Value value,
func::FuncOp insertPoint,
StringRef namePrefix,
FuncGeneratorType createFunc) {
// The mangled name of the function has this format:
// <namePrefix>_<DLT>_<shape>_<ordering>_<eltType>
// _<indexBitWidth>_<pointerBitWidth>
RankedTensorType rtp = desc.getTensorType();
SmallString<32> nameBuffer;
llvm::raw_svector_ostream nameOstream(nameBuffer);
nameOstream << namePrefix;
unsigned rank = rtp.getShape().size();
assert(rank == indices.size());
for (unsigned d = 0; d < rank; d++) {
nameOstream << toMLIRString(getDimLevelType(rtp, d)) << "_";
}
// Static dim sizes are used in the generated code while dynamic sizes are
// loaded from the dimSizes buffer. This is the reason for adding the shape
// to the function name.
for (auto d : rtp.getShape())
nameOstream << d << "_";
SparseTensorEncodingAttr enc = getSparseTensorEncoding(rtp);
// Permutation information is also used in generating insertion.
if (enc.getDimOrdering() && !enc.getDimOrdering().isIdentity())
nameOstream << enc.getDimOrdering() << "_";
nameOstream << rtp.getElementType() << "_";
nameOstream << enc.getIndexBitWidth() << "_" << enc.getPointerBitWidth();
// Look up the function.
ModuleOp module = insertPoint->getParentOfType<ModuleOp>();
MLIRContext *context = module.getContext();
auto result = SymbolRefAttr::get(context, nameOstream.str());
auto func = module.lookupSymbol<func::FuncOp>(result.getAttr());
// Construct parameters for fields and indices.
SmallVector<Value> operands(desc.getFields().begin(), desc.getFields().end());
operands.append(indices.begin(), indices.end());
operands.push_back(value);
Location loc = insertPoint.getLoc();
if (!func) {
// Create the function.
OpBuilder::InsertionGuard insertionGuard(builder);
builder.setInsertionPoint(insertPoint);
func = builder.create<func::FuncOp>(
loc, nameOstream.str(),
FunctionType::get(context, ValueRange(operands).getTypes(),
ValueRange(desc.getFields()).getTypes()));
func.setPrivate();
createFunc(builder, module, func, rtp);
}
// Generate a call to perform the insertion and update `fields` with values
// returned from the call.
func::CallOp call = builder.create<func::CallOp>(loc, func, operands);
for (size_t i = 0, e = desc.getNumFields(); i < e; i++) {
desc.getFields()[i] = call.getResult(i);
}
}
/// Generations insertion finalization code.
static void genEndInsert(OpBuilder &builder, Location loc,
SparseTensorDescriptor desc) {
RankedTensorType rtp = desc.getTensorType();
unsigned rank = rtp.getShape().size();
for (unsigned d = 0; d < rank; d++) {
if (isCompressedDim(rtp, d)) {
// Compressed dimensions need a pointer cleanup for all entries
// that were not visited during the insertion pass.
//
// TODO: avoid cleanup and keep compressed scheme consistent at all
// times?
//
if (d > 0) {
Type ptrType = getSparseTensorEncoding(rtp).getPointerType();
Value ptrMemRef = desc.getPtrMemRef(d);
Value hi = desc.getPtrMemSize(builder, loc, d);
Value zero = constantIndex(builder, loc, 0);
Value one = constantIndex(builder, loc, 1);
// Vector of only one, but needed by createFor's prototype.
SmallVector<Value, 1> inits{genLoad(builder, loc, ptrMemRef, zero)};
scf::ForOp loop = createFor(builder, loc, hi, inits, one);
Value i = loop.getInductionVar();
Value oldv = loop.getRegionIterArg(0);
Value newv = genLoad(builder, loc, ptrMemRef, i);
Value ptrZero = constantZero(builder, loc, ptrType);
Value cond = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, newv, ptrZero);
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, TypeRange(ptrType),
cond, /*else*/ true);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
genStore(builder, loc, oldv, ptrMemRef, i);
builder.create<scf::YieldOp>(loc, oldv);
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
builder.create<scf::YieldOp>(loc, newv);
builder.setInsertionPointAfter(ifOp);
builder.create<scf::YieldOp>(loc, ifOp.getResult(0));
builder.setInsertionPointAfter(loop);
}
} else {
assert(isDenseDim(rtp, d) || isSingletonDim(rtp, d));
}
}
}
//===----------------------------------------------------------------------===//
// Codegen rules.
//===----------------------------------------------------------------------===//
/// Sparse tensor storage conversion rule for returns.
class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
SmallVector<Value> flattened;
flattenOperands(adaptor.getOperands(), flattened);
// Create a return with the flattened value extracted from sparse tensors.
rewriter.replaceOpWithNewOp<func::ReturnOp>(op, flattened);
return success();
}
};
/// Sparse tensor storage conversion rule for calls.
class SparseCallConverter : public OpConversionPattern<func::CallOp> {
public:
// The default CallOp converter can not handle 1:N type conversion.
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(func::CallOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
// In case of:
// sparse_tensor, f, sparse_tensor = call @foo(...)
// ==>
// memref..., f, memref = call @foo(...) replace with
// cast(memref...)->sparse_tensor, f, cast(memref...)->sparse_tensor
SmallVector<Type> finalRetTy;
if (failed(typeConverter->convertTypes(op.getResultTypes(), finalRetTy)))
return failure();
// (1) Genereates new call with flattened return value.
SmallVector<Value> flattened;
flattenOperands(adaptor.getOperands(), flattened);
auto newCall = rewriter.create<func::CallOp>(loc, op.getCallee(),
finalRetTy, flattened);
// (2) Create cast operation for sparse tensor returns.
SmallVector<Value> castedRet;
// Tracks the offset of current return value (of the orignal call)
// relative to the new call (after sparse tensor flattening);
unsigned retOffset = 0;
// Temporal buffer to hold the flattened list of type for
// a sparse tensor.
SmallVector<Type> sparseFlat;
for (auto ret : op.getResults()) {
assert(retOffset < newCall.getNumResults());
auto retType = ret.getType();
if (failed(typeConverter->convertType(retType, sparseFlat)))
// This should never happen.
llvm_unreachable("Failed to convert type in sparse tensor codegen");
// Converted types can not be empty when the type conversion succeed.
assert(!sparseFlat.empty());
if (sparseFlat.size() > 1) {
auto flatSize = sparseFlat.size();
ValueRange fields(iterator_range<ResultRange::iterator>(
newCall.result_begin() + retOffset,
newCall.result_begin() + retOffset + flatSize));
castedRet.push_back(genTuple(rewriter, loc, retType, fields));
retOffset += flatSize;
} else {
// If this is an 1:1 conversion, no need for casting.
castedRet.push_back(newCall.getResult(retOffset));
retOffset++;
}
sparseFlat.clear();
}
assert(castedRet.size() == op.getNumResults());
rewriter.replaceOp(op, castedRet);
return success();
}
};
/// Sparse codegen rule for dimension accesses.
class SparseDimOpConverter : public OpConversionPattern<tensor::DimOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
std::optional<int64_t> index = op.getConstantIndex();
if (!index || !getSparseTensorEncoding(adaptor.getSource().getType()))
return failure();
auto desc = getDescriptorFromTensorTuple(adaptor.getSource());
auto sz = sizeFromTensorAtDim(rewriter, op.getLoc(), desc, *index);
rewriter.replaceOp(op, sz);
return success();
}
};
/// Sparse codegen rule for trivial tensor casts.
class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Only rewrite identically annotated source/dest.
auto encDst = getSparseTensorEncoding(op.getType());
auto encSrc = getSparseTensorEncoding(op.getSource().getType());
if (!encDst || encDst != encSrc)
return failure();
rewriter.replaceOp(op, adaptor.getOperands());
return success();
}
};
/// Sparse codgen rule for the alloc operator.
class SparseTensorAllocConverter
: public OpConversionPattern<bufferization::AllocTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
SparseTensorAllocConverter(TypeConverter &typeConverter, MLIRContext *context,
bool enableInit)
: OpConversionPattern(typeConverter, context),
enableBufferInitialization(enableInit) {}
LogicalResult
matchAndRewrite(bufferization::AllocTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
RankedTensorType resType = op.getType();
auto enc = getSparseTensorEncoding(resType);
if (!enc)
return failure();
if (op.getCopy())
return rewriter.notifyMatchFailure(op, "tensor copy not implemented");
// Construct allocation for each field.
Location loc = op.getLoc();
SmallVector<Value> fields;
createAllocFields(rewriter, loc, resType, adaptor.getOperands(),
enableBufferInitialization, fields);
// Replace operation with resulting memrefs.
rewriter.replaceOp(op, genTuple(rewriter, loc, resType, fields));
return success();
}
private:
bool enableBufferInitialization;
};
/// Sparse codegen rule for the dealloc operator.
class SparseTensorDeallocConverter
: public OpConversionPattern<bufferization::DeallocTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(bufferization::DeallocTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto enc = getSparseTensorEncoding(op.getTensor().getType());
if (!enc)
return failure();
// Replace the sparse tensor deallocation with field deallocations.
Location loc = op.getLoc();
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
for (auto input : desc.getMemRefFields())
// Deallocate every buffer used to store the sparse tensor handler.
rewriter.create<memref::DeallocOp>(loc, input);
rewriter.eraseOp(op);
return success();
}
};
/// Sparse codegen rule for tensor rematerialization.
class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(LoadOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Prepare descriptor.
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
// Generate optional insertion finalization code.
if (op.getHasInserts())
genEndInsert(rewriter, op.getLoc(), desc);
// Replace operation with resulting memrefs.
rewriter.replaceOp(op, genTuple(rewriter, op.getLoc(), desc));
return success();
}
};
/// Sparse codegen rule for the expand op.
class SparseExpandConverter : public OpConversionPattern<ExpandOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ExpandOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (!getSparseTensorEncoding(op.getTensor().getType()))
return failure();
Location loc = op->getLoc();
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
auto srcType = getRankedTensorType(op.getTensor());
Type eltType = srcType.getElementType();
Type boolType = rewriter.getIntegerType(1);
Type idxType = rewriter.getIndexType();
// All initialization should be done on entry of the loop nest.
rewriter.setInsertionPointAfter(op.getTensor().getDefiningOp());
// Determine the size for access expansion (always the innermost stored
// dimension size, translated back to original dimension). Note that we
// recursively rewrite the new DimOp on the **original** tensor.
unsigned innerDim = toOrigDim(srcType, srcType.getRank() - 1);
auto sz = sizeFromTensorAtDim(rewriter, loc, desc, innerDim);
// Generate a memref for `sz` elements of type `t`.
auto genAlloc = [&](Type t) {
auto memTp = MemRefType::get({ShapedType::kDynamic}, t);
return rewriter.create<memref::AllocOp>(loc, memTp, ValueRange{sz});
};
// Allocate temporary buffers for values/filled-switch and added.
// We do not use stack buffers for this, since the expanded size may
// be rather large (as it envelops a single expanded dense dimension).
Value values = genAlloc(eltType);
Value filled = genAlloc(boolType);
Value added = genAlloc(idxType);
Value zero = constantZero(rewriter, loc, idxType);
// Reset the values/filled-switch to all-zero/false. Note that this
// introduces an O(N) operation into the computation, but this reset
// operation is amortized over the innermost loops for the access
// pattern expansion. As noted in the operation doc, we would like
// to amortize this setup cost even between kernels.
rewriter.create<linalg::FillOp>(
loc, ValueRange{constantZero(rewriter, loc, eltType)},
ValueRange{values});
rewriter.create<linalg::FillOp>(
loc, ValueRange{constantZero(rewriter, loc, boolType)},
ValueRange{filled});
// Replace expansion op with these buffers and initial index.
assert(op.getNumResults() == 4);
rewriter.replaceOp(op, {values, filled, added, zero});
return success();
}
};
/// Sparse codegen rule for the compress operator.
class SparseCompressConverter : public OpConversionPattern<CompressOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(CompressOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
SmallVector<Value> fields;
auto desc = getMutDescriptorFromTensorTuple(adaptor.getTensor(), fields);
Value values = adaptor.getValues();
Value filled = adaptor.getFilled();
Value added = adaptor.getAdded();
Value count = adaptor.getCount();
RankedTensorType dstType = desc.getTensorType();
Type eltType = dstType.getElementType();
// Prepare indices.
SmallVector<Value> indices(adaptor.getIndices());
// If the innermost dimension is ordered, we need to sort the indices
// in the "added" array prior to applying the compression.
unsigned rank = dstType.getShape().size();
if (isOrderedDim(dstType, rank - 1))
rewriter.create<SortOp>(loc, count, ValueRange{added}, ValueRange{});
// While performing the insertions, we also need to reset the elements
// of the values/filled-switch by only iterating over the set elements,
// to ensure that the runtime complexity remains proportional to the
// sparsity of the expanded access pattern.
//
// Generate
// out_memrefs = for (i = 0; i < count; i++)(in_memrefs) {
// index = added[i];
// value = values[index];
// insert({prev_indices, index}, value);
// new_memrefs = insert(in_memrefs, {prev_indices, index}, value);
// values[index] = 0;
// filled[index] = false;
// yield new_memrefs
// }
scf::ForOp loop = createFor(rewriter, loc, count, desc.getFields());
Value i = loop.getInductionVar();
Value index = genLoad(rewriter, loc, added, i);
Value value = genLoad(rewriter, loc, values, index);
indices.push_back(index);
// TODO: faster for subsequent insertions?
auto insertPoint = op->template getParentOfType<func::FuncOp>();
genInsertionCallHelper(rewriter, desc, indices, value, insertPoint,
kInsertFuncNamePrefix, genInsertBody);
genStore(rewriter, loc, constantZero(rewriter, loc, eltType), values,
index);
genStore(rewriter, loc, constantI1(rewriter, loc, false), filled, index);
rewriter.create<scf::YieldOp>(loc, desc.getFields());
rewriter.setInsertionPointAfter(loop);
Value result = genTuple(rewriter, loc, dstType, loop->getResults());
// Deallocate the buffers on exit of the full loop nest.
Operation *parent = getTop(op);
rewriter.setInsertionPointAfter(parent);
rewriter.create<memref::DeallocOp>(loc, values);
rewriter.create<memref::DeallocOp>(loc, filled);
rewriter.create<memref::DeallocOp>(loc, added);
// Replace operation with resulting memrefs.
rewriter.replaceOp(op, result);
return success();
}
};
/// Sparse codegen rule for the insert operator.
class SparseInsertConverter : public OpConversionPattern<InsertOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(InsertOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
SmallVector<Value> fields;
auto desc = getMutDescriptorFromTensorTuple(adaptor.getTensor(), fields);
// Prepare and indices.
SmallVector<Value> indices(adaptor.getIndices());
// Generate insertion.
Value value = adaptor.getValue();
auto insertPoint = op->template getParentOfType<func::FuncOp>();
genInsertionCallHelper(rewriter, desc, indices, value, insertPoint,
kInsertFuncNamePrefix, genInsertBody);
// Replace operation with resulting memrefs.
rewriter.replaceOp(op, genTuple(rewriter, op.getLoc(), desc));
return success();
}
};
/// Sparse codegen rule for pointer accesses.
class SparseToPointersConverter : public OpConversionPattern<ToPointersOp> {
public:
using OpAdaptor = typename ToPointersOp::Adaptor;
using OpConversionPattern<ToPointersOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ToPointersOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Replace the requested pointer access with corresponding field.
// The cast_op is inserted by type converter to intermix 1:N type
// conversion.
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
uint64_t dim = op.getDimension().getZExtValue();
rewriter.replaceOp(op, desc.getPtrMemRef(dim));
return success();
}
};
/// Sparse codegen rule for index accesses.
class SparseToIndicesConverter : public OpConversionPattern<ToIndicesOp> {
public:
using OpAdaptor = typename ToIndicesOp::Adaptor;
using OpConversionPattern<ToIndicesOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ToIndicesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Replace the requested pointer access with corresponding field.
// The cast_op is inserted by type converter to intermix 1:N type
// conversion.
Location loc = op.getLoc();
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
uint64_t dim = op.getDimension().getZExtValue();
Value field = desc.getIdxMemRefOrView(rewriter, loc, dim);
// Insert a cast to bridge the actual type to the user expected type. If the
// actual type and the user expected type aren't compatible, the compiler or
// the runtime will issue an error.
Type resType = op.getResult().getType();
if (resType != field.getType())
field = rewriter.create<memref::CastOp>(loc, resType, field);
rewriter.replaceOp(op, field);
return success();
}
};
/// Sparse codegen rule for accessing the linear indices buffer.
class SparseToIndicesBufferConverter
: public OpConversionPattern<ToIndicesBufferOp> {
public:
using OpAdaptor = typename ToIndicesBufferOp::Adaptor;
using OpConversionPattern<ToIndicesBufferOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ToIndicesBufferOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Replace the requested pointer access with corresponding field.
// The cast_op is inserted by type converter to intermix 1:N type
// conversion.
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
rewriter.replaceOp(op, desc.getAOSMemRef());
return success();
}
};
/// Sparse codegen rule for value accesses.
class SparseToValuesConverter : public OpConversionPattern<ToValuesOp> {
public:
using OpAdaptor = typename ToValuesOp::Adaptor;
using OpConversionPattern<ToValuesOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Replace the requested pointer access with corresponding field.
// The cast_op is inserted by type converter to intermix 1:N type
// conversion.
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
rewriter.replaceOp(op, desc.getValMemRef());
return success();
}
};
/// Sparse codegen rule for the convert operator.
class SparseConvertConverter : public OpConversionPattern<ConvertOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ConvertOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
SparseTensorEncodingAttr encDst = getSparseTensorEncoding(op.getType());
SparseTensorEncodingAttr encSrc =
getSparseTensorEncoding(op.getSource().getType());
if (encDst != encSrc) {
// This should be handled by rewriting before codegen.
return failure();
}
rewriter.replaceOp(op, adaptor.getSource());
return success();
}
};
/// Sparse codegen rule for number of entries operator.
class SparseNumberOfEntriesConverter
: public OpConversionPattern<NumberOfEntriesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(NumberOfEntriesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Query memSizes for the actually stored values.
rewriter.replaceOp(
op, genValMemSize(rewriter, op.getLoc(), adaptor.getTensor()));
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Public method for populating conversion rules.
//===----------------------------------------------------------------------===//
/// Populates the given patterns list with conversion rules required for
/// the sparsification of linear algebra operations.
void mlir::populateSparseTensorCodegenPatterns(
TypeConverter &typeConverter, RewritePatternSet &patterns,
bool enableBufferInitialization) {
patterns.add<SparseReturnConverter, SparseCallConverter, SparseDimOpConverter,
SparseCastConverter, SparseTensorDeallocConverter,
SparseTensorLoadConverter, SparseExpandConverter,
SparseCompressConverter, SparseInsertConverter,
SparseToPointersConverter, SparseToIndicesConverter,
SparseToIndicesBufferConverter, SparseToValuesConverter,
SparseConvertConverter, SparseNumberOfEntriesConverter>(
typeConverter, patterns.getContext());
patterns.add<SparseTensorAllocConverter>(typeConverter, patterns.getContext(),
enableBufferInitialization);
}
|