1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
//===-- sanitizer_allocator_combined.h --------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Part of the Sanitizer Allocator.
//
//===----------------------------------------------------------------------===//
#ifndef SANITIZER_ALLOCATOR_H
#error This file must be included inside sanitizer_allocator.h
#endif
// This class implements a complete memory allocator by using two
// internal allocators:
// PrimaryAllocator is efficient, but may not allocate some sizes (alignments).
// When allocating 2^x bytes it should return 2^x aligned chunk.
// PrimaryAllocator is used via a local AllocatorCache.
// SecondaryAllocator can allocate anything, but is not efficient.
template <class PrimaryAllocator,
class LargeMmapAllocatorPtrArray = DefaultLargeMmapAllocatorPtrArray>
class CombinedAllocator {
public:
using AllocatorCache = typename PrimaryAllocator::AllocatorCache;
using SecondaryAllocator =
LargeMmapAllocator<typename PrimaryAllocator::MapUnmapCallback,
LargeMmapAllocatorPtrArray,
typename PrimaryAllocator::AddressSpaceView>;
void InitLinkerInitialized(s32 release_to_os_interval_ms) {
stats_.InitLinkerInitialized();
primary_.Init(release_to_os_interval_ms);
secondary_.InitLinkerInitialized();
}
void Init(s32 release_to_os_interval_ms, uptr heap_start = 0) {
stats_.Init();
primary_.Init(release_to_os_interval_ms, heap_start);
secondary_.Init();
}
void *Allocate(AllocatorCache *cache, uptr size, uptr alignment) {
// Returning 0 on malloc(0) may break a lot of code.
if (size == 0)
size = 1;
if (size + alignment < size) {
Report("WARNING: %s: CombinedAllocator allocation overflow: "
"0x%zx bytes with 0x%zx alignment requested\n",
SanitizerToolName, size, alignment);
return nullptr;
}
uptr original_size = size;
// If alignment requirements are to be fulfilled by the frontend allocator
// rather than by the primary or secondary, passing an alignment lower than
// or equal to 8 will prevent any further rounding up, as well as the later
// alignment check.
if (alignment > 8)
size = RoundUpTo(size, alignment);
// The primary allocator should return a 2^x aligned allocation when
// requested 2^x bytes, hence using the rounded up 'size' when being
// serviced by the primary (this is no longer true when the primary is
// using a non-fixed base address). The secondary takes care of the
// alignment without such requirement, and allocating 'size' would use
// extraneous memory, so we employ 'original_size'.
void *res;
if (primary_.CanAllocate(size, alignment))
res = cache->Allocate(&primary_, primary_.ClassID(size));
else
res = secondary_.Allocate(&stats_, original_size, alignment);
if (alignment > 8)
CHECK_EQ(reinterpret_cast<uptr>(res) & (alignment - 1), 0);
return res;
}
s32 ReleaseToOSIntervalMs() const {
return primary_.ReleaseToOSIntervalMs();
}
void SetReleaseToOSIntervalMs(s32 release_to_os_interval_ms) {
primary_.SetReleaseToOSIntervalMs(release_to_os_interval_ms);
}
void ForceReleaseToOS() {
primary_.ForceReleaseToOS();
}
void Deallocate(AllocatorCache *cache, void *p) {
if (!p) return;
if (primary_.PointerIsMine(p))
cache->Deallocate(&primary_, primary_.GetSizeClass(p), p);
else
secondary_.Deallocate(&stats_, p);
}
void *Reallocate(AllocatorCache *cache, void *p, uptr new_size,
uptr alignment) {
if (!p)
return Allocate(cache, new_size, alignment);
if (!new_size) {
Deallocate(cache, p);
return nullptr;
}
CHECK(PointerIsMine(p));
uptr old_size = GetActuallyAllocatedSize(p);
uptr memcpy_size = Min(new_size, old_size);
void *new_p = Allocate(cache, new_size, alignment);
if (new_p)
internal_memcpy(new_p, p, memcpy_size);
Deallocate(cache, p);
return new_p;
}
bool PointerIsMine(const void *p) const {
if (primary_.PointerIsMine(p))
return true;
return secondary_.PointerIsMine(p);
}
bool FromPrimary(const void *p) const { return primary_.PointerIsMine(p); }
void *GetMetaData(const void *p) {
if (primary_.PointerIsMine(p))
return primary_.GetMetaData(p);
return secondary_.GetMetaData(p);
}
void *GetBlockBegin(const void *p) {
if (primary_.PointerIsMine(p))
return primary_.GetBlockBegin(p);
return secondary_.GetBlockBegin(p);
}
// This function does the same as GetBlockBegin, but is much faster.
// Must be called with the allocator locked.
void *GetBlockBeginFastLocked(const void *p) {
if (primary_.PointerIsMine(p))
return primary_.GetBlockBegin(p);
return secondary_.GetBlockBeginFastLocked(p);
}
uptr GetActuallyAllocatedSize(void *p) {
if (primary_.PointerIsMine(p))
return primary_.GetActuallyAllocatedSize(p);
return secondary_.GetActuallyAllocatedSize(p);
}
uptr TotalMemoryUsed() {
return primary_.TotalMemoryUsed() + secondary_.TotalMemoryUsed();
}
void TestOnlyUnmap() { primary_.TestOnlyUnmap(); }
void InitCache(AllocatorCache *cache) {
cache->Init(&stats_);
}
void DestroyCache(AllocatorCache *cache) {
cache->Destroy(&primary_, &stats_);
}
void SwallowCache(AllocatorCache *cache) {
cache->Drain(&primary_);
}
void GetStats(AllocatorStatCounters s) const {
stats_.Get(s);
}
void PrintStats() {
primary_.PrintStats();
secondary_.PrintStats();
}
// ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
// introspection API.
void ForceLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
primary_.ForceLock();
secondary_.ForceLock();
}
void ForceUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
secondary_.ForceUnlock();
primary_.ForceUnlock();
}
// Iterate over all existing chunks.
// The allocator must be locked when calling this function.
void ForEachChunk(ForEachChunkCallback callback, void *arg) {
primary_.ForEachChunk(callback, arg);
secondary_.ForEachChunk(callback, arg);
}
private:
PrimaryAllocator primary_;
SecondaryAllocator secondary_;
AllocatorGlobalStats stats_;
};
|