1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
|
//===-- sanitizer_allocator_primary32.h -------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Part of the Sanitizer Allocator.
//
//===----------------------------------------------------------------------===//
#ifndef SANITIZER_ALLOCATOR_H
#error This file must be included inside sanitizer_allocator.h
#endif
template<class SizeClassAllocator> struct SizeClassAllocator32LocalCache;
// SizeClassAllocator32 -- allocator for 32-bit address space.
// This allocator can theoretically be used on 64-bit arch, but there it is less
// efficient than SizeClassAllocator64.
//
// [kSpaceBeg, kSpaceBeg + kSpaceSize) is the range of addresses which can
// be returned by MmapOrDie().
//
// Region:
// a result of a single call to MmapAlignedOrDieOnFatalError(kRegionSize,
// kRegionSize).
// Since the regions are aligned by kRegionSize, there are exactly
// kNumPossibleRegions possible regions in the address space and so we keep
// a ByteMap possible_regions to store the size classes of each Region.
// 0 size class means the region is not used by the allocator.
//
// One Region is used to allocate chunks of a single size class.
// A Region looks like this:
// UserChunk1 .. UserChunkN <gap> MetaChunkN .. MetaChunk1
//
// In order to avoid false sharing the objects of this class should be
// chache-line aligned.
struct SizeClassAllocator32FlagMasks { // Bit masks.
enum {
kRandomShuffleChunks = 1,
kUseSeparateSizeClassForBatch = 2,
};
};
template <class Params>
class SizeClassAllocator32 {
private:
static const u64 kTwoLevelByteMapSize1 =
(Params::kSpaceSize >> Params::kRegionSizeLog) >> 12;
static const u64 kMinFirstMapSizeTwoLevelByteMap = 4;
public:
using AddressSpaceView = typename Params::AddressSpaceView;
static const uptr kSpaceBeg = Params::kSpaceBeg;
static const u64 kSpaceSize = Params::kSpaceSize;
static const uptr kMetadataSize = Params::kMetadataSize;
typedef typename Params::SizeClassMap SizeClassMap;
static const uptr kRegionSizeLog = Params::kRegionSizeLog;
typedef typename Params::MapUnmapCallback MapUnmapCallback;
using ByteMap = typename conditional<
(kTwoLevelByteMapSize1 < kMinFirstMapSizeTwoLevelByteMap),
FlatByteMap<(Params::kSpaceSize >> Params::kRegionSizeLog),
AddressSpaceView>,
TwoLevelByteMap<kTwoLevelByteMapSize1, 1 << 12, AddressSpaceView>>::type;
COMPILER_CHECK(!SANITIZER_SIGN_EXTENDED_ADDRESSES ||
(kSpaceSize & (kSpaceSize - 1)) == 0);
static const bool kRandomShuffleChunks = Params::kFlags &
SizeClassAllocator32FlagMasks::kRandomShuffleChunks;
static const bool kUseSeparateSizeClassForBatch = Params::kFlags &
SizeClassAllocator32FlagMasks::kUseSeparateSizeClassForBatch;
struct TransferBatch {
static const uptr kMaxNumCached = SizeClassMap::kMaxNumCachedHint - 2;
void SetFromArray(void *batch[], uptr count) {
DCHECK_LE(count, kMaxNumCached);
count_ = count;
for (uptr i = 0; i < count; i++)
batch_[i] = batch[i];
}
uptr Count() const { return count_; }
void Clear() { count_ = 0; }
void Add(void *ptr) {
batch_[count_++] = ptr;
DCHECK_LE(count_, kMaxNumCached);
}
void CopyToArray(void *to_batch[]) const {
for (uptr i = 0, n = Count(); i < n; i++)
to_batch[i] = batch_[i];
}
// How much memory do we need for a batch containing n elements.
static uptr AllocationSizeRequiredForNElements(uptr n) {
return sizeof(uptr) * 2 + sizeof(void *) * n;
}
static uptr MaxCached(uptr size) {
return Min(kMaxNumCached, SizeClassMap::MaxCachedHint(size));
}
TransferBatch *next;
private:
uptr count_;
void *batch_[kMaxNumCached];
};
static const uptr kBatchSize = sizeof(TransferBatch);
COMPILER_CHECK((kBatchSize & (kBatchSize - 1)) == 0);
COMPILER_CHECK(kBatchSize == SizeClassMap::kMaxNumCachedHint * sizeof(uptr));
static uptr ClassIdToSize(uptr class_id) {
return (class_id == SizeClassMap::kBatchClassID) ?
kBatchSize : SizeClassMap::Size(class_id);
}
typedef SizeClassAllocator32<Params> ThisT;
typedef SizeClassAllocator32LocalCache<ThisT> AllocatorCache;
void Init(s32 release_to_os_interval_ms, uptr heap_start = 0) {
CHECK(!heap_start);
possible_regions.Init();
internal_memset(size_class_info_array, 0, sizeof(size_class_info_array));
}
s32 ReleaseToOSIntervalMs() const {
return kReleaseToOSIntervalNever;
}
void SetReleaseToOSIntervalMs(s32 release_to_os_interval_ms) {
// This is empty here. Currently only implemented in 64-bit allocator.
}
void ForceReleaseToOS() {
// Currently implemented in 64-bit allocator only.
}
void *MapWithCallback(uptr size) {
void *res = MmapOrDie(size, PrimaryAllocatorName);
MapUnmapCallback().OnMap((uptr)res, size);
return res;
}
void UnmapWithCallback(uptr beg, uptr size) {
MapUnmapCallback().OnUnmap(beg, size);
UnmapOrDie(reinterpret_cast<void *>(beg), size);
}
static bool CanAllocate(uptr size, uptr alignment) {
return size <= SizeClassMap::kMaxSize &&
alignment <= SizeClassMap::kMaxSize;
}
void *GetMetaData(const void *p) {
CHECK(kMetadataSize);
CHECK(PointerIsMine(p));
uptr mem = reinterpret_cast<uptr>(p);
uptr beg = ComputeRegionBeg(mem);
uptr size = ClassIdToSize(GetSizeClass(p));
u32 offset = mem - beg;
uptr n = offset / (u32)size; // 32-bit division
uptr meta = (beg + kRegionSize) - (n + 1) * kMetadataSize;
return reinterpret_cast<void*>(meta);
}
NOINLINE TransferBatch *AllocateBatch(AllocatorStats *stat, AllocatorCache *c,
uptr class_id) {
DCHECK_LT(class_id, kNumClasses);
SizeClassInfo *sci = GetSizeClassInfo(class_id);
SpinMutexLock l(&sci->mutex);
if (sci->free_list.empty()) {
if (UNLIKELY(!PopulateFreeList(stat, c, sci, class_id)))
return nullptr;
DCHECK(!sci->free_list.empty());
}
TransferBatch *b = sci->free_list.front();
sci->free_list.pop_front();
return b;
}
NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id,
TransferBatch *b) {
DCHECK_LT(class_id, kNumClasses);
CHECK_GT(b->Count(), 0);
SizeClassInfo *sci = GetSizeClassInfo(class_id);
SpinMutexLock l(&sci->mutex);
sci->free_list.push_front(b);
}
bool PointerIsMine(const void *p) const {
uptr mem = reinterpret_cast<uptr>(p);
if (SANITIZER_SIGN_EXTENDED_ADDRESSES)
mem &= (kSpaceSize - 1);
if (mem < kSpaceBeg || mem >= kSpaceBeg + kSpaceSize)
return false;
return GetSizeClass(p) != 0;
}
uptr GetSizeClass(const void *p) const {
uptr id = ComputeRegionId(reinterpret_cast<uptr>(p));
return possible_regions.contains(id) ? possible_regions[id] : 0;
}
void *GetBlockBegin(const void *p) {
CHECK(PointerIsMine(p));
uptr mem = reinterpret_cast<uptr>(p);
uptr beg = ComputeRegionBeg(mem);
uptr size = ClassIdToSize(GetSizeClass(p));
u32 offset = mem - beg;
u32 n = offset / (u32)size; // 32-bit division
uptr res = beg + (n * (u32)size);
return reinterpret_cast<void*>(res);
}
uptr GetActuallyAllocatedSize(void *p) {
CHECK(PointerIsMine(p));
return ClassIdToSize(GetSizeClass(p));
}
static uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
uptr TotalMemoryUsed() {
// No need to lock here.
uptr res = 0;
for (uptr i = 0; i < kNumPossibleRegions; i++)
if (possible_regions[i])
res += kRegionSize;
return res;
}
void TestOnlyUnmap() {
for (uptr i = 0; i < kNumPossibleRegions; i++)
if (possible_regions[i])
UnmapWithCallback((i * kRegionSize), kRegionSize);
}
// ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
// introspection API.
void ForceLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
for (uptr i = 0; i < kNumClasses; i++) {
GetSizeClassInfo(i)->mutex.Lock();
}
}
void ForceUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
for (int i = kNumClasses - 1; i >= 0; i--) {
GetSizeClassInfo(i)->mutex.Unlock();
}
}
// Iterate over all existing chunks.
// The allocator must be locked when calling this function.
void ForEachChunk(ForEachChunkCallback callback, void *arg) const {
for (uptr region = 0; region < kNumPossibleRegions; region++)
if (possible_regions.contains(region) && possible_regions[region]) {
uptr chunk_size = ClassIdToSize(possible_regions[region]);
uptr max_chunks_in_region = kRegionSize / (chunk_size + kMetadataSize);
uptr region_beg = region * kRegionSize;
for (uptr chunk = region_beg;
chunk < region_beg + max_chunks_in_region * chunk_size;
chunk += chunk_size) {
// Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
callback(chunk, arg);
}
}
}
void PrintStats() {}
static uptr AdditionalSize() { return 0; }
typedef SizeClassMap SizeClassMapT;
static const uptr kNumClasses = SizeClassMap::kNumClasses;
private:
static const uptr kRegionSize = 1 << kRegionSizeLog;
static const uptr kNumPossibleRegions = kSpaceSize / kRegionSize;
struct ALIGNED(SANITIZER_CACHE_LINE_SIZE) SizeClassInfo {
StaticSpinMutex mutex;
IntrusiveList<TransferBatch> free_list;
u32 rand_state;
};
COMPILER_CHECK(sizeof(SizeClassInfo) % kCacheLineSize == 0);
uptr ComputeRegionId(uptr mem) const {
if (SANITIZER_SIGN_EXTENDED_ADDRESSES)
mem &= (kSpaceSize - 1);
const uptr res = mem >> kRegionSizeLog;
CHECK_LT(res, kNumPossibleRegions);
return res;
}
uptr ComputeRegionBeg(uptr mem) const { return mem & ~(kRegionSize - 1); }
uptr AllocateRegion(AllocatorStats *stat, uptr class_id) {
DCHECK_LT(class_id, kNumClasses);
const uptr res = reinterpret_cast<uptr>(MmapAlignedOrDieOnFatalError(
kRegionSize, kRegionSize, PrimaryAllocatorName));
if (UNLIKELY(!res))
return 0;
MapUnmapCallback().OnMap(res, kRegionSize);
stat->Add(AllocatorStatMapped, kRegionSize);
CHECK(IsAligned(res, kRegionSize));
possible_regions[ComputeRegionId(res)] = class_id;
return res;
}
SizeClassInfo *GetSizeClassInfo(uptr class_id) {
DCHECK_LT(class_id, kNumClasses);
return &size_class_info_array[class_id];
}
bool PopulateBatches(AllocatorCache *c, SizeClassInfo *sci, uptr class_id,
TransferBatch **current_batch, uptr max_count,
uptr *pointers_array, uptr count) {
// If using a separate class for batches, we do not need to shuffle it.
if (kRandomShuffleChunks && (!kUseSeparateSizeClassForBatch ||
class_id != SizeClassMap::kBatchClassID))
RandomShuffle(pointers_array, count, &sci->rand_state);
TransferBatch *b = *current_batch;
for (uptr i = 0; i < count; i++) {
if (!b) {
b = c->CreateBatch(class_id, this, (TransferBatch*)pointers_array[i]);
if (UNLIKELY(!b))
return false;
b->Clear();
}
b->Add((void*)pointers_array[i]);
if (b->Count() == max_count) {
sci->free_list.push_back(b);
b = nullptr;
}
}
*current_batch = b;
return true;
}
bool PopulateFreeList(AllocatorStats *stat, AllocatorCache *c,
SizeClassInfo *sci, uptr class_id) {
const uptr region = AllocateRegion(stat, class_id);
if (UNLIKELY(!region))
return false;
if (kRandomShuffleChunks)
if (UNLIKELY(sci->rand_state == 0))
// The random state is initialized from ASLR (PIE) and time.
sci->rand_state = reinterpret_cast<uptr>(sci) ^ NanoTime();
const uptr size = ClassIdToSize(class_id);
const uptr n_chunks = kRegionSize / (size + kMetadataSize);
const uptr max_count = TransferBatch::MaxCached(size);
DCHECK_GT(max_count, 0);
TransferBatch *b = nullptr;
constexpr uptr kShuffleArraySize = 48;
uptr shuffle_array[kShuffleArraySize];
uptr count = 0;
for (uptr i = region; i < region + n_chunks * size; i += size) {
shuffle_array[count++] = i;
if (count == kShuffleArraySize) {
if (UNLIKELY(!PopulateBatches(c, sci, class_id, &b, max_count,
shuffle_array, count)))
return false;
count = 0;
}
}
if (count) {
if (UNLIKELY(!PopulateBatches(c, sci, class_id, &b, max_count,
shuffle_array, count)))
return false;
}
if (b) {
CHECK_GT(b->Count(), 0);
sci->free_list.push_back(b);
}
return true;
}
ByteMap possible_regions;
SizeClassInfo size_class_info_array[kNumClasses];
};
|