1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
|
//===- sanitizer_dense_map.h - Dense probed hash table ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is fork of llvm/ADT/DenseMap.h class with the following changes:
// * Use mmap to allocate.
// * No iterators.
// * Does not shrink.
//
//===----------------------------------------------------------------------===//
#ifndef SANITIZER_DENSE_MAP_H
#define SANITIZER_DENSE_MAP_H
#include "sanitizer_common.h"
#include "sanitizer_dense_map_info.h"
#include "sanitizer_internal_defs.h"
#include "sanitizer_type_traits.h"
namespace __sanitizer {
template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
typename BucketT>
class DenseMapBase {
public:
using size_type = unsigned;
using key_type = KeyT;
using mapped_type = ValueT;
using value_type = BucketT;
WARN_UNUSED_RESULT bool empty() const { return getNumEntries() == 0; }
unsigned size() const { return getNumEntries(); }
/// Grow the densemap so that it can contain at least \p NumEntries items
/// before resizing again.
void reserve(size_type NumEntries) {
auto NumBuckets = getMinBucketToReserveForEntries(NumEntries);
if (NumBuckets > getNumBuckets())
grow(NumBuckets);
}
void clear() {
if (getNumEntries() == 0 && getNumTombstones() == 0)
return;
const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
if (__sanitizer::is_trivially_destructible<ValueT>::value) {
// Use a simpler loop when values don't need destruction.
for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P)
P->getFirst() = EmptyKey;
} else {
unsigned NumEntries = getNumEntries();
for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey)) {
if (!KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
P->getSecond().~ValueT();
--NumEntries;
}
P->getFirst() = EmptyKey;
}
}
CHECK_EQ(NumEntries, 0);
}
setNumEntries(0);
setNumTombstones(0);
}
/// Return 1 if the specified key is in the map, 0 otherwise.
size_type count(const KeyT &Key) const {
const BucketT *TheBucket;
return LookupBucketFor(Key, TheBucket) ? 1 : 0;
}
value_type *find(const KeyT &Key) {
BucketT *TheBucket;
if (LookupBucketFor(Key, TheBucket))
return TheBucket;
return nullptr;
}
const value_type *find(const KeyT &Key) const {
const BucketT *TheBucket;
if (LookupBucketFor(Key, TheBucket))
return TheBucket;
return nullptr;
}
/// Alternate version of find() which allows a different, and possibly
/// less expensive, key type.
/// The DenseMapInfo is responsible for supplying methods
/// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
/// type used.
template <class LookupKeyT>
value_type *find_as(const LookupKeyT &Key) {
BucketT *TheBucket;
if (LookupBucketFor(Key, TheBucket))
return TheBucket;
return nullptr;
}
template <class LookupKeyT>
const value_type *find_as(const LookupKeyT &Key) const {
const BucketT *TheBucket;
if (LookupBucketFor(Key, TheBucket))
return TheBucket;
return nullptr;
}
/// lookup - Return the entry for the specified key, or a default
/// constructed value if no such entry exists.
ValueT lookup(const KeyT &Key) const {
const BucketT *TheBucket;
if (LookupBucketFor(Key, TheBucket))
return TheBucket->getSecond();
return ValueT();
}
// Inserts key,value pair into the map if the key isn't already in the map.
// If the key is already in the map, it returns false and doesn't update the
// value.
detail::DenseMapPair<value_type *, bool> insert(const value_type &KV) {
return try_emplace(KV.first, KV.second);
}
// Inserts key,value pair into the map if the key isn't already in the map.
// If the key is already in the map, it returns false and doesn't update the
// value.
detail::DenseMapPair<value_type *, bool> insert(value_type &&KV) {
return try_emplace(__sanitizer::move(KV.first),
__sanitizer::move(KV.second));
}
// Inserts key,value pair into the map if the key isn't already in the map.
// The value is constructed in-place if the key is not in the map, otherwise
// it is not moved.
template <typename... Ts>
detail::DenseMapPair<value_type *, bool> try_emplace(KeyT &&Key,
Ts &&...Args) {
BucketT *TheBucket;
if (LookupBucketFor(Key, TheBucket))
return {TheBucket, false}; // Already in map.
// Otherwise, insert the new element.
TheBucket = InsertIntoBucket(TheBucket, __sanitizer::move(Key),
__sanitizer::forward<Ts>(Args)...);
return {TheBucket, true};
}
// Inserts key,value pair into the map if the key isn't already in the map.
// The value is constructed in-place if the key is not in the map, otherwise
// it is not moved.
template <typename... Ts>
detail::DenseMapPair<value_type *, bool> try_emplace(const KeyT &Key,
Ts &&...Args) {
BucketT *TheBucket;
if (LookupBucketFor(Key, TheBucket))
return {TheBucket, false}; // Already in map.
// Otherwise, insert the new element.
TheBucket =
InsertIntoBucket(TheBucket, Key, __sanitizer::forward<Ts>(Args)...);
return {TheBucket, true};
}
/// Alternate version of insert() which allows a different, and possibly
/// less expensive, key type.
/// The DenseMapInfo is responsible for supplying methods
/// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
/// type used.
template <typename LookupKeyT>
detail::DenseMapPair<value_type *, bool> insert_as(value_type &&KV,
const LookupKeyT &Val) {
BucketT *TheBucket;
if (LookupBucketFor(Val, TheBucket))
return {TheBucket, false}; // Already in map.
// Otherwise, insert the new element.
TheBucket =
InsertIntoBucketWithLookup(TheBucket, __sanitizer::move(KV.first),
__sanitizer::move(KV.second), Val);
return {TheBucket, true};
}
bool erase(const KeyT &Val) {
BucketT *TheBucket;
if (!LookupBucketFor(Val, TheBucket))
return false; // not in map.
TheBucket->getSecond().~ValueT();
TheBucket->getFirst() = getTombstoneKey();
decrementNumEntries();
incrementNumTombstones();
return true;
}
void erase(value_type *I) {
CHECK_NE(I, nullptr);
BucketT *TheBucket = &*I;
TheBucket->getSecond().~ValueT();
TheBucket->getFirst() = getTombstoneKey();
decrementNumEntries();
incrementNumTombstones();
}
value_type &FindAndConstruct(const KeyT &Key) {
BucketT *TheBucket;
if (LookupBucketFor(Key, TheBucket))
return *TheBucket;
return *InsertIntoBucket(TheBucket, Key);
}
ValueT &operator[](const KeyT &Key) { return FindAndConstruct(Key).second; }
value_type &FindAndConstruct(KeyT &&Key) {
BucketT *TheBucket;
if (LookupBucketFor(Key, TheBucket))
return *TheBucket;
return *InsertIntoBucket(TheBucket, __sanitizer::move(Key));
}
ValueT &operator[](KeyT &&Key) {
return FindAndConstruct(__sanitizer::move(Key)).second;
}
/// Iterate over active entries of the container.
///
/// Function can return fast to stop the process.
template <class Fn>
void forEach(Fn fn) {
const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
for (auto *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
const KeyT K = P->getFirst();
if (!KeyInfoT::isEqual(K, EmptyKey) &&
!KeyInfoT::isEqual(K, TombstoneKey)) {
if (!fn(*P))
return;
}
}
}
template <class Fn>
void forEach(Fn fn) const {
const_cast<DenseMapBase *>(this)->forEach(
[&](const value_type &KV) { return fn(KV); });
}
protected:
DenseMapBase() = default;
void destroyAll() {
if (getNumBuckets() == 0) // Nothing to do.
return;
const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
!KeyInfoT::isEqual(P->getFirst(), TombstoneKey))
P->getSecond().~ValueT();
P->getFirst().~KeyT();
}
}
void initEmpty() {
setNumEntries(0);
setNumTombstones(0);
CHECK_EQ((getNumBuckets() & (getNumBuckets() - 1)), 0);
const KeyT EmptyKey = getEmptyKey();
for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B)
::new (&B->getFirst()) KeyT(EmptyKey);
}
/// Returns the number of buckets to allocate to ensure that the DenseMap can
/// accommodate \p NumEntries without need to grow().
unsigned getMinBucketToReserveForEntries(unsigned NumEntries) {
// Ensure that "NumEntries * 4 < NumBuckets * 3"
if (NumEntries == 0)
return 0;
// +1 is required because of the strict equality.
// For example if NumEntries is 48, we need to return 401.
return RoundUpToPowerOfTwo((NumEntries * 4 / 3 + 1) + /* NextPowerOf2 */ 1);
}
void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) {
initEmpty();
// Insert all the old elements.
const KeyT EmptyKey = getEmptyKey();
const KeyT TombstoneKey = getTombstoneKey();
for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) {
if (!KeyInfoT::isEqual(B->getFirst(), EmptyKey) &&
!KeyInfoT::isEqual(B->getFirst(), TombstoneKey)) {
// Insert the key/value into the new table.
BucketT *DestBucket;
bool FoundVal = LookupBucketFor(B->getFirst(), DestBucket);
(void)FoundVal; // silence warning.
CHECK(!FoundVal);
DestBucket->getFirst() = __sanitizer::move(B->getFirst());
::new (&DestBucket->getSecond())
ValueT(__sanitizer::move(B->getSecond()));
incrementNumEntries();
// Free the value.
B->getSecond().~ValueT();
}
B->getFirst().~KeyT();
}
}
template <typename OtherBaseT>
void copyFrom(
const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT, BucketT> &other) {
CHECK_NE(&other, this);
CHECK_EQ(getNumBuckets(), other.getNumBuckets());
setNumEntries(other.getNumEntries());
setNumTombstones(other.getNumTombstones());
if (__sanitizer::is_trivially_copyable<KeyT>::value &&
__sanitizer::is_trivially_copyable<ValueT>::value)
internal_memcpy(reinterpret_cast<void *>(getBuckets()),
other.getBuckets(), getNumBuckets() * sizeof(BucketT));
else
for (uptr i = 0; i < getNumBuckets(); ++i) {
::new (&getBuckets()[i].getFirst())
KeyT(other.getBuckets()[i].getFirst());
if (!KeyInfoT::isEqual(getBuckets()[i].getFirst(), getEmptyKey()) &&
!KeyInfoT::isEqual(getBuckets()[i].getFirst(), getTombstoneKey()))
::new (&getBuckets()[i].getSecond())
ValueT(other.getBuckets()[i].getSecond());
}
}
static unsigned getHashValue(const KeyT &Val) {
return KeyInfoT::getHashValue(Val);
}
template <typename LookupKeyT>
static unsigned getHashValue(const LookupKeyT &Val) {
return KeyInfoT::getHashValue(Val);
}
static const KeyT getEmptyKey() { return KeyInfoT::getEmptyKey(); }
static const KeyT getTombstoneKey() { return KeyInfoT::getTombstoneKey(); }
private:
unsigned getNumEntries() const {
return static_cast<const DerivedT *>(this)->getNumEntries();
}
void setNumEntries(unsigned Num) {
static_cast<DerivedT *>(this)->setNumEntries(Num);
}
void incrementNumEntries() { setNumEntries(getNumEntries() + 1); }
void decrementNumEntries() { setNumEntries(getNumEntries() - 1); }
unsigned getNumTombstones() const {
return static_cast<const DerivedT *>(this)->getNumTombstones();
}
void setNumTombstones(unsigned Num) {
static_cast<DerivedT *>(this)->setNumTombstones(Num);
}
void incrementNumTombstones() { setNumTombstones(getNumTombstones() + 1); }
void decrementNumTombstones() { setNumTombstones(getNumTombstones() - 1); }
const BucketT *getBuckets() const {
return static_cast<const DerivedT *>(this)->getBuckets();
}
BucketT *getBuckets() { return static_cast<DerivedT *>(this)->getBuckets(); }
unsigned getNumBuckets() const {
return static_cast<const DerivedT *>(this)->getNumBuckets();
}
BucketT *getBucketsEnd() { return getBuckets() + getNumBuckets(); }
const BucketT *getBucketsEnd() const {
return getBuckets() + getNumBuckets();
}
void grow(unsigned AtLeast) { static_cast<DerivedT *>(this)->grow(AtLeast); }
template <typename KeyArg, typename... ValueArgs>
BucketT *InsertIntoBucket(BucketT *TheBucket, KeyArg &&Key,
ValueArgs &&...Values) {
TheBucket = InsertIntoBucketImpl(Key, Key, TheBucket);
TheBucket->getFirst() = __sanitizer::forward<KeyArg>(Key);
::new (&TheBucket->getSecond())
ValueT(__sanitizer::forward<ValueArgs>(Values)...);
return TheBucket;
}
template <typename LookupKeyT>
BucketT *InsertIntoBucketWithLookup(BucketT *TheBucket, KeyT &&Key,
ValueT &&Value, LookupKeyT &Lookup) {
TheBucket = InsertIntoBucketImpl(Key, Lookup, TheBucket);
TheBucket->getFirst() = __sanitizer::move(Key);
::new (&TheBucket->getSecond()) ValueT(__sanitizer::move(Value));
return TheBucket;
}
template <typename LookupKeyT>
BucketT *InsertIntoBucketImpl(const KeyT &Key, const LookupKeyT &Lookup,
BucketT *TheBucket) {
// If the load of the hash table is more than 3/4, or if fewer than 1/8 of
// the buckets are empty (meaning that many are filled with tombstones),
// grow the table.
//
// The later case is tricky. For example, if we had one empty bucket with
// tons of tombstones, failing lookups (e.g. for insertion) would have to
// probe almost the entire table until it found the empty bucket. If the
// table completely filled with tombstones, no lookup would ever succeed,
// causing infinite loops in lookup.
unsigned NewNumEntries = getNumEntries() + 1;
unsigned NumBuckets = getNumBuckets();
if (UNLIKELY(NewNumEntries * 4 >= NumBuckets * 3)) {
this->grow(NumBuckets * 2);
LookupBucketFor(Lookup, TheBucket);
NumBuckets = getNumBuckets();
} else if (UNLIKELY(NumBuckets - (NewNumEntries + getNumTombstones()) <=
NumBuckets / 8)) {
this->grow(NumBuckets);
LookupBucketFor(Lookup, TheBucket);
}
CHECK(TheBucket);
// Only update the state after we've grown our bucket space appropriately
// so that when growing buckets we have self-consistent entry count.
incrementNumEntries();
// If we are writing over a tombstone, remember this.
const KeyT EmptyKey = getEmptyKey();
if (!KeyInfoT::isEqual(TheBucket->getFirst(), EmptyKey))
decrementNumTombstones();
return TheBucket;
}
/// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
/// FoundBucket. If the bucket contains the key and a value, this returns
/// true, otherwise it returns a bucket with an empty marker or tombstone and
/// returns false.
template <typename LookupKeyT>
bool LookupBucketFor(const LookupKeyT &Val,
const BucketT *&FoundBucket) const {
const BucketT *BucketsPtr = getBuckets();
const unsigned NumBuckets = getNumBuckets();
if (NumBuckets == 0) {
FoundBucket = nullptr;
return false;
}
// FoundTombstone - Keep track of whether we find a tombstone while probing.
const BucketT *FoundTombstone = nullptr;
const KeyT EmptyKey = getEmptyKey();
const KeyT TombstoneKey = getTombstoneKey();
CHECK(!KeyInfoT::isEqual(Val, EmptyKey));
CHECK(!KeyInfoT::isEqual(Val, TombstoneKey));
unsigned BucketNo = getHashValue(Val) & (NumBuckets - 1);
unsigned ProbeAmt = 1;
while (true) {
const BucketT *ThisBucket = BucketsPtr + BucketNo;
// Found Val's bucket? If so, return it.
if (LIKELY(KeyInfoT::isEqual(Val, ThisBucket->getFirst()))) {
FoundBucket = ThisBucket;
return true;
}
// If we found an empty bucket, the key doesn't exist in the set.
// Insert it and return the default value.
if (LIKELY(KeyInfoT::isEqual(ThisBucket->getFirst(), EmptyKey))) {
// If we've already seen a tombstone while probing, fill it in instead
// of the empty bucket we eventually probed to.
FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
return false;
}
// If this is a tombstone, remember it. If Val ends up not in the map, we
// prefer to return it than something that would require more probing.
if (KeyInfoT::isEqual(ThisBucket->getFirst(), TombstoneKey) &&
!FoundTombstone)
FoundTombstone = ThisBucket; // Remember the first tombstone found.
// Otherwise, it's a hash collision or a tombstone, continue quadratic
// probing.
BucketNo += ProbeAmt++;
BucketNo &= (NumBuckets - 1);
}
}
template <typename LookupKeyT>
bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) {
const BucketT *ConstFoundBucket;
bool Result = const_cast<const DenseMapBase *>(this)->LookupBucketFor(
Val, ConstFoundBucket);
FoundBucket = const_cast<BucketT *>(ConstFoundBucket);
return Result;
}
public:
/// Return the approximate size (in bytes) of the actual map.
/// This is just the raw memory used by DenseMap.
/// If entries are pointers to objects, the size of the referenced objects
/// are not included.
uptr getMemorySize() const {
return RoundUpTo(getNumBuckets() * sizeof(BucketT), GetPageSizeCached());
}
};
/// Equality comparison for DenseMap.
///
/// Iterates over elements of LHS confirming that each (key, value) pair in LHS
/// is also in RHS, and that no additional pairs are in RHS.
/// Equivalent to N calls to RHS.find and N value comparisons. Amortized
/// complexity is linear, worst case is O(N^2) (if every hash collides).
template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
typename BucketT>
bool operator==(
const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &LHS,
const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &RHS) {
if (LHS.size() != RHS.size())
return false;
bool R = true;
LHS.forEach(
[&](const typename DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT,
BucketT>::value_type &KV) -> bool {
const auto *I = RHS.find(KV.first);
if (!I || I->second != KV.second) {
R = false;
return false;
}
return true;
});
return R;
}
/// Inequality comparison for DenseMap.
///
/// Equivalent to !(LHS == RHS). See operator== for performance notes.
template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
typename BucketT>
bool operator!=(
const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &LHS,
const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &RHS) {
return !(LHS == RHS);
}
template <typename KeyT, typename ValueT,
typename KeyInfoT = DenseMapInfo<KeyT>,
typename BucketT = detail::DenseMapPair<KeyT, ValueT>>
class DenseMap : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT, BucketT>,
KeyT, ValueT, KeyInfoT, BucketT> {
friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
// Lift some types from the dependent base class into this class for
// simplicity of referring to them.
using BaseT = DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
BucketT *Buckets = nullptr;
unsigned NumEntries = 0;
unsigned NumTombstones = 0;
unsigned NumBuckets = 0;
public:
/// Create a DenseMap with an optional \p InitialReserve that guarantee that
/// this number of elements can be inserted in the map without grow()
explicit DenseMap(unsigned InitialReserve) { init(InitialReserve); }
constexpr DenseMap() = default;
DenseMap(const DenseMap &other) : BaseT() {
init(0);
copyFrom(other);
}
DenseMap(DenseMap &&other) : BaseT() {
init(0);
swap(other);
}
~DenseMap() {
this->destroyAll();
deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets);
}
void swap(DenseMap &RHS) {
Swap(Buckets, RHS.Buckets);
Swap(NumEntries, RHS.NumEntries);
Swap(NumTombstones, RHS.NumTombstones);
Swap(NumBuckets, RHS.NumBuckets);
}
DenseMap &operator=(const DenseMap &other) {
if (&other != this)
copyFrom(other);
return *this;
}
DenseMap &operator=(DenseMap &&other) {
this->destroyAll();
deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT));
init(0);
swap(other);
return *this;
}
void copyFrom(const DenseMap &other) {
this->destroyAll();
deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets);
if (allocateBuckets(other.NumBuckets)) {
this->BaseT::copyFrom(other);
} else {
NumEntries = 0;
NumTombstones = 0;
}
}
void init(unsigned InitNumEntries) {
auto InitBuckets = BaseT::getMinBucketToReserveForEntries(InitNumEntries);
if (allocateBuckets(InitBuckets)) {
this->BaseT::initEmpty();
} else {
NumEntries = 0;
NumTombstones = 0;
}
}
void grow(unsigned AtLeast) {
unsigned OldNumBuckets = NumBuckets;
BucketT *OldBuckets = Buckets;
allocateBuckets(RoundUpToPowerOfTwo(Max<unsigned>(64, AtLeast)));
CHECK(Buckets);
if (!OldBuckets) {
this->BaseT::initEmpty();
return;
}
this->moveFromOldBuckets(OldBuckets, OldBuckets + OldNumBuckets);
// Free the old table.
deallocate_buffer(OldBuckets, sizeof(BucketT) * OldNumBuckets);
}
private:
unsigned getNumEntries() const { return NumEntries; }
void setNumEntries(unsigned Num) { NumEntries = Num; }
unsigned getNumTombstones() const { return NumTombstones; }
void setNumTombstones(unsigned Num) { NumTombstones = Num; }
BucketT *getBuckets() const { return Buckets; }
unsigned getNumBuckets() const { return NumBuckets; }
bool allocateBuckets(unsigned Num) {
NumBuckets = Num;
if (NumBuckets == 0) {
Buckets = nullptr;
return false;
}
uptr Size = sizeof(BucketT) * NumBuckets;
if (Size * 2 <= GetPageSizeCached()) {
// We always allocate at least a page, so use entire space.
unsigned Log2 = MostSignificantSetBitIndex(GetPageSizeCached() / Size);
Size <<= Log2;
NumBuckets <<= Log2;
CHECK_EQ(Size, sizeof(BucketT) * NumBuckets);
CHECK_GT(Size * 2, GetPageSizeCached());
}
Buckets = static_cast<BucketT *>(allocate_buffer(Size));
return true;
}
static void *allocate_buffer(uptr Size) {
return MmapOrDie(RoundUpTo(Size, GetPageSizeCached()), "DenseMap");
}
static void deallocate_buffer(void *Ptr, uptr Size) {
UnmapOrDie(Ptr, RoundUpTo(Size, GetPageSizeCached()));
}
};
} // namespace __sanitizer
#endif // SANITIZER_DENSE_MAP_H
|